
SimMechanics™

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimMechanics™ User's Guide
© COPYRIGHT 2002–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2012 Online only New for Version 4.0 (Release R2012a)
September 2012 Online only Revised for Version 4.1 (Release R2012b)
March 2013 Online only Revised for Version 4.2 (Release R2013a)
September 2013 Online only Revised for Version 4.3 (Release R2013b)
March 2014 Online only Revised for Version 4.4 (Release R2014a)
October 2014 Online only Revised for Version 4.5 (Release R2014b)
March 2015 Online only Revised for Version 4.6 (Release R2015a)
September 2015 Online only Revised for Version 4.7 (Release R2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Multibody Modeling

Spatial Relationships
1

Working with Frames . 1-2
Frames . 1-3
Frame Types . 1-3
Frame Transforms . 1-4
Frame Networks . 1-5

Representing Frames . 1-6
Identity Relationships . 1-7
Translation and Rotation . 1-8
Interpreting a Frame Network 1-8

World and Reference Frames . 1-11
World Frame . 1-11
Reference Frame . 1-14

Frame Transformations . 1-17
Rigid and Time-Varying Transformations 1-17
Rigid Transformation Example 1-19
Reversing Rigid Transformations 1-22

Rotation Methods . 1-25
Specifying Rotation . 1-25
Aligned Axes . 1-25
Standard Axis . 1-26
Arbitrary Axis . 1-27

iv Contents

Translation Methods . 1-29
Specifying Translation . 1-29
Cartesian . 1-29
Standard Axis . 1-30
Cylindrical . 1-31

Represent Binary Link Frame Tree 1-33
Model Overview . 1-33
Build Model . 1-34
Generate Binary Link Subsystem 1-35
Visualize Model . 1-36
Open Reference Model . 1-36

Represent Box Frame Tree . 1-37
Model Overview . 1-37
Start Model . 1-39
Initialize Model Workspace Parameters 1-40
Add Bottom Plane Frames . 1-41
Add Top Plane Frames . 1-44
Add Arch Frames . 1-47
Save Model . 1-51

Visualize Box Frame Tree . 1-52
Model Overview . 1-52
Build Model . 1-52
Visualize Model . 1-54

Find and Fix Frame Issues . 1-56
Rigidity Loops . 1-56
Shorted Rigid Transform Blocks 1-57

Rigid Bodies
2

SimMechanics Bodies . 2-2
Rigid Body Essentials . 2-2
Rigid Body Properties . 2-3
Rigid Body Frames . 2-4
Rigid Body Delimitation . 2-5
Simple and Compound Rigid Bodies 2-7

v

Solid Geometries . 2-9
Geometry Essentials . 2-9
Compound Shapes . 2-9
Basic Shapes . 2-10
General Extrusion and Revolution Shapes 2-11
Imported Shapes . 2-12

Solid and Body Visualization . 2-13
Visualization Essentials . 2-13
Solid Visualization . 2-13
Body Visualization . 2-15

Revolution and General Extrusion Shapes 2-17
Shape Cross Sections . 2-17
Coordinate Matrices . 2-17
Hollow Cross Sections . 2-18
3-D Shape Generation . 2-19

Solid Inertia . 2-21
Inertial Properties . 2-21
Blocks with Inertia . 2-21
Inertia in a Model . 2-22
Inertia Parameterizations . 2-23
Custom Inertia . 2-23
Moments and Products of Inertia 2-24
Complex Inertias . 2-26

Specify Custom Inertia . 2-27
Custom Inertia . 2-27
Model Overview . 2-27
Inertia Parameters . 2-28
Build Model . 2-30
Specify Inertia . 2-30
Add Motion Sensing . 2-32
Run Simulation . 2-33

Interactively Create Solid Frames 2-35
Solid Frames . 2-35
Frame-Creation Interface . 2-36
Model Solid Shape . 2-37
Create New Frame . 2-38
Specify Frame Origin . 2-39
Specify Primary Axis . 2-41

vi Contents

Specify Secondary Axis . 2-42
Save New Frame . 2-43

Solid Color . 2-45
Basic Graphic Parameters . 2-46
Advanced Graphic Parameters 2-47

Model Cone . 2-50
Model Overview . 2-50
Modeling Approach . 2-50
Build Solid Model . 2-51
Define Solid Properties . 2-52
Visualize Solid Model . 2-53

Model Dome . 2-56
Model Overview . 2-56
Modeling Approach . 2-56
Build Solid Model . 2-57
Define Solid Properties . 2-58
Visualize Solid Model . 2-59

Model I-Beam . 2-62
Model Overview . 2-62
Modeling Approach . 2-62
Build Solid Model . 2-63
Define Solid Properties . 2-64
Visualize Solid Model . 2-65

Model Box Beam . 2-68
Model Overview . 2-68
Modeling Approach . 2-68
Build Solid Model . 2-69
Define Solid Properties . 2-70
Visualize Solid Model . 2-71

Model Binary Link . 2-74
Model Overview . 2-74
Modeling Approach . 2-74
Solid Properties . 2-76
Build Model . 2-77
Update Subsystem . 2-79
Visualize Model . 2-80
Open Reference Model . 2-81

vii

Model Two-Hole Binary Link . 2-82
Model Overview . 2-82
Build Model . 2-82
Generate Subsystem . 2-84
Visualize Model . 2-86
Open Reference Model . 2-87

Model Pivot Mount . 2-88
Model Overview . 2-88
Modeling Approach . 2-88
Build Model . 2-90
Generate Subsystem . 2-92
Visualize Model . 2-93
Open Reference Model . 2-94

Multibody Systems
3

Modeling Joint Connections . 3-2
Joint Degrees of Freedom . 3-2
Joint Primitives . 3-4
Joint Inertia . 3-6

Assembling Multibody Models . 3-7
Model Assembly . 3-7
Connecting Joints . 3-7
Orienting Joints . 3-8
Guiding Assembly . 3-9
Verifying Model Assembly . 3-10

Mechanism Degrees of Freedom 3-13

Model Double Pendulum . 3-14
Model Overview . 3-14
Build Model . 3-15
Guide Model Assembly . 3-16
Visualize Model and Check Assembly Status 3-16
Simulate Model . 3-18
Open Reference Model . 3-18

viii Contents

Model Four Bar . 3-19
Model Overview . 3-19
Modeling Approach . 3-19
Build Model . 3-20
Specify Block Parameters . 3-23
Guide Assembly and Visualize Model 3-23
Simulate Model . 3-25
Open Reference Model . 3-25

Find and Fix Aiming-Mechanism Assembly Errors . . . 3-26
Model Overview . 3-26
Explore Model . 3-27
Update Model . 3-30
Troubleshoot Assembly Error 3-30
Correct Assembly Error . 3-32
Simulate Model . 3-33

Gear Constraints . 3-35
Gear Types . 3-35
Featured Examples . 3-36
Inertia, Geometry, and Efficiency 3-36
Using Gear Blocks . 3-36
Assembling Rigid Bodies with Gear Constraints 3-38
Common Gear Assembly and Simulation 3-39
Rack and Pinion Assembly and Simulation 3-41

Model Rack and Pinion . 3-44
Model Overview . 3-44
Model Pinion . 3-46
Model Rack . 3-48
Add Rack and Pinion Constraint 3-51
Actuate Model . 3-52
Simulate Model . 3-54
Open Complete Model . 3-55

Model Planetary Gear Train . 3-56
Model Overview . 3-56
Model Sun-Planet Gear Set . 3-57
Constrain Sun-Planet Gear Motion 3-60
Add Ring Gear . 3-62
Add Gear Carrier . 3-65
Add More Planet Gears . 3-70

ix

Model Cam Mechanism . 3-72
Model Overview . 3-72
Geometry Ports . 3-73
Spline Curves . 3-75
Point On Curve Constraints . 3-76
Model Eccentric Cam . 3-76
Model Cam Follower . 3-82
Interactively Create Frame at Follower Tip 3-84
Constrain Cam and Follower . 3-88

Internal Mechanics, Actuation and Sensing
4

Modeling Gravity . 4-2
Gravity Models . 4-2
Gravitational Force Magnitude 4-3
Force Position and Direction . 4-4
Gravitational Torques . 4-5

Model Planetary Orbit Due to Gravity 4-7
Model Overview . 4-7
Build Model . 4-9
Configure Simulation Parameters 4-14
Simulate Model . 4-15
Add Remaining Planets . 4-16

Joint Actuation . 4-18
Actuation Modes . 4-18
Motion Input . 4-21
Input Handling . 4-23
Assembly and Simulation . 4-24

Specify Motion Input Derivatives 4-26

Joint Actuation Limitations . 4-27
Closed Loop Restriction . 4-27
Motion Actuation Not Available in Spherical Primitives 4-27
Redundant Actuation Mode Not Supported 4-27
Model Report and Mechanics Explorer Restrictions . . . 4-28
Motion-Controlled DOF Restriction 4-28

x Contents

Actuating and Sensing Using Physical Signals 4-29
Exposing Physical Signal Ports 4-29
Providing Actuation Signals . 4-29
Extracting Sensing Signals . 4-30

Forces and Torques Between Arbitrary Bodies 4-32
Force and Torque Blocks . 4-32
Actuating Rigid Bodies . 4-32

Sensing . 4-37
Sensing Overview . 4-37
Variables You Can Sense . 4-38
Blocks with Sensing Capability 4-38
Sensing Output Format . 4-38

Force and Torque Sensing . 4-40
Blocks with Force and Torque Sensing 4-40
Joint Forces and Torques You can Sense 4-41
Force and Torque Measurement Direction 4-43

Motion Sensing . 4-44
Sensing Spatial Relationship Between Joint Frames . . 4-44
Sensing Spatial Relationship Between Arbitrary

Frames . 4-46

Rotational Measurements . 4-49
Rotation Sensing Overview . 4-49
Measuring Rotation . 4-49
Axis-Angle Measurements . 4-49
Quaternion Measurements . 4-50
Transform Measurements . 4-52

Translational Measurements . 4-54
Translation Sensing Overview 4-54
Measuring Translation . 4-54
Cartesian Measurements . 4-55
Cylindrical Measurements . 4-57
Spherical Measurements . 4-59

Measurement Frames . 4-62
Measurement Frame Purpose 4-62
Measurement Frame Types . 4-63

xi

Sense Motion in Double-Pendulum Model 4-65
Model Overview . 4-65
Modeling Approach . 4-66
Build Model . 4-66
Guide Model Assembly . 4-68
Simulate Model . 4-68
Save Model . 4-70

Actuate Joint in Four-Bar Model 4-71
Model Overview . 4-71
Four-Bar Linkages . 4-72
Modeling Approach . 4-74
Build Model . 4-75
Simulate Model . 4-78

Analyze Coupler Curves at Various Coupler Lengths . 4-83
Model Overview . 4-83
Build Model . 4-83
Specify Block Parameters . 4-85
Create Simulation Script . 4-86
Run Simulation Script . 4-87

Sense Forces and Torques at Joints 4-89
Overview . 4-89
Open Model . 4-90
Sense Actuation Torque . 4-90
Sense Constraint Forces . 4-93
Sense Total Forces . 4-95

Sense Internal Forces in Double-Pendulum Link 4-97
Model Overview . 4-97
Add Weld Joint Block to Model 4-98
Add Constraint Force Sensing 4-99
Add Damping to Joints . 4-100
Simulate Model . 4-100
Plot Constraint Forces . 4-101

Prescribe Joint Motion in Four-Bar Model 4-103
Model Overview . 4-103
Build Model . 4-103
Simulate Model . 4-106

xii Contents

Prescribe Joint Motion in Planar Manipulator Model 4-108
Model Overview . 4-108
Add Virtual Joint . 4-109
Prescribe Motion Inputs . 4-110
Sense Joint Actuation Torques 4-114
Simulate Model . 4-115

Simulation and Analysis

Simulation
5

Configure Model for Simulation 5-2
Specify Solver Settings . 5-2

Find and Fix Simulation Issues . 5-4
Models with For Each Subsystem Blocks Have Limited

Visualization . 5-4
Models with Model Blocks Have No Visualization 5-4
Simscape Local Solvers Do Not Work with

SimMechanics . 5-4

Visualization and Animation
6

Model Visualization . 6-2
About Visualization . 6-2
Visualizing Individual Solids . 6-2
Visualizing Bodies and Assemblies 6-3

Open Mechanics Explorer . 6-5

Modify Model View . 6-6
Model Visualization . 6-6
Select a Standard View . 6-6

xiii

Set View Convention . 6-7
Rotate, Pan, and Zoom View . 6-8
Split Model View . 6-9

Filtering Model Visualization . 6-11
What Is Visualization Filtering? 6-11
Changing Component Visibility 6-12
Visualization Filtering Options 6-13
Components You Can Filter . 6-13
Model Hierarchy and Tree Nodes 6-14
Filtering Hierarchical Subsystems 6-14
Updating Models with Hidden Nodes 6-15
Alternative Ways to Enhance Visibility 6-16

Filter Radial Engine Visualization 6-17
Visualization Filtering . 6-17
Open Example Model . 6-18
Update Example Model . 6-18
Hide Half-Cylinder Subsystem 6-19
Show Solid in Hidden Subsystem 6-20
Show Only Piston Subsystem 6-21
Show Everything . 6-22

Visualize Frames . 6-24
Frame Overview . 6-24
Show All Frames . 6-24
Highlight Individual Frames . 6-25
Visualize Frames with Graphical Markers 6-27

Go to Block from Mechanics Explorer 6-29

Configure Model for Video Recording 6-31
Correspondence Between Animation and Simulation

Speeds . 6-31
Configure Model with Variable-Step Solver 6-31
Configure Model with Fixed-Step Solver 6-32

Record Animation Video . 6-34

Turn Model Visualization Off and On 6-35

Find and Fix Visualization Issues 6-36
Mechanics Explorer Not Opening 6-36

xiv Contents

Model Showing Sideways in Mechanics Explorer 6-36
Parts Not Showing in Mechanics Explorer 6-37
Colored Parts Showing Gray in Mechanics Explorer . . 6-39

CAD Import

About CAD Import
7

CAD Translation . 7-2
CAD Translation Steps . 7-3
Software Requirements . 7-3

CAD Import . 7-5
Importing a Model . 7-5
Generating Import Files . 7-6
SimMechanics XML Schema . 7-7

Install and Register SimMechanics Link Software 7-9
Before You Begin . 7-9
Step 1: Get Installation Files . 7-9
Step 2: Run Installation Function 7-9
Step 3: Register MATLAB as Automation Server 7-10
Step 4: Enable SimMechanics Link Plug-In 7-10

Import Robot Arm Model . 7-11
Check Import Files . 7-12
Import Robot Assembly . 7-13
Visualize and Simulate Robot Assembly 7-13

Import Stewart Platform Model 7-16
Check Import Files . 7-17
Import Model . 7-18
Visualize and Simulate Robot Assembly 7-19

Find and Fix CAD Import Issues 7-21
CAD Constraints Replaced with Rigid Connections . . . 7-21
Model Showing Sideways in Mechanics Explorer 7-22

xv

Parts Not Showing in Mechanics Explorer 7-24
Colored Parts Showing Gray in Mechanics Explorer . . 7-25

Deployment

Code Generation
8

About Code Generation . 8-2
Simulation Accelerator Modes . 8-2
Model Deployment . 8-3

Configure Four-Bar Model for Code Generation 8-4
Configure Model . 8-4

Configure Model for Rapid Accelerator Mode 8-6
Model Overview . 8-6
Configure Model . 8-7

Find and Fix Code Generation Issues 8-9
Variable step Simulink solver requires rsim.tlc target . . 8-9
Simulink solver must be continuous 8-10
SimMechanics does not support visualization in

accelerator mode . 8-10
SimMechanics Does Not Support Run-Time Parameters 8-11

Multibody Modeling

1

Spatial Relationships

• “Working with Frames” on page 1-2
• “Representing Frames” on page 1-6
• “World and Reference Frames” on page 1-11
• “Frame Transformations” on page 1-17
• “Rotation Methods” on page 1-25
• “Translation Methods” on page 1-29
• “Represent Binary Link Frame Tree” on page 1-33
• “Represent Box Frame Tree” on page 1-37
• “Visualize Box Frame Tree” on page 1-52
• “Find and Fix Frame Issues” on page 1-56

1 Spatial Relationships

1-2

Working with Frames

In this section...

“Frames” on page 1-3
“Frame Types” on page 1-3
“Frame Transforms” on page 1-4
“Frame Networks” on page 1-5

Frames form the foundation of multibody modeling. These constructs encode the relative
position and orientation of one rigid body with respect to another. In SimMechanics,
every rigid body contains at least one frame.

Consider a double pendulum with two links. Each link has a set of physical properties
that affect its dynamic behavior and appearance—geometry, inertia, and color. Yet, none
of these properties contain information about the spatial arrangement of the links. To
position and orient one link with respect to another, you need frames.

You relate two rigid bodies in space by connecting two frames together. In the double
pendulum, you connect the end frame of one link to the end frame of another link using a

 Working with Frames

1-3

joint. In turn, each link contains a local reference frame against which you define the two
end frames. You can make two frames coincident, translate them, or rotate them with
respect to each other.

Frames

Frames have one origin and three axes. The origin defines the local zero coordinate of
the frame. This is the point with respect to which you measure the translational distance
between two frames. The axes define the directions in which the components of a 3-D
vector are resolved. For example, if you measure the translation vector between two
frame origins, you can resolve the vector components along the axes of the base frame.
For more information, see “Measurement Frames” on page 4-62.

Frame Types

A multibody model generally contains two frame types: global and local. The global
frame represents the world. It is inertial and defines absolute rest in a model. In
SimMechanics, you represent the global frame with the World Frame block. This
block is available in the Frames and Transforms library. The World frame is uniquely
defined in every model. You can add multiple World Frame blocks to a model, but they all
represent the same frame.

A local frame represents a position and orientation in a rigid body. It can move with
respect to the World frame, but not with respect to the rigid body itself. Because it
can move with respect to the World frame, a local frame is generally non-inertial. To
add a local frame to a rigid body, you use the Rigid Transform block. You can add
multiple local frames to a rigid body—to define the position and orientation of joints, to

1 Spatial Relationships

1-4

apply an external force or torque, or to sense motion. For more information, see “Frame
Transformations” on page 1-17.

Frame Transforms

To separate two frames in space, you apply a frame transformation between them.
In SimMechanics, two frame transformations are possible: rotation and translation.
Rotation changes the relative orientation of two frames. Translation changes their
relative position.

Rigid transformations fix spatial relationships for all time. When you rigidly connect
two frames, they move as a single unit. They cannot move with respect to each other. In
SimMechanics, you apply a rigid transformation with the Rigid Transform block.

Note: Frame transformations are important in multibody models. The Rigid Transform
block is among the most commonly used in SimMechanics.

You can also relate to frames with a time-varying transformation. In this case, the
rotation, translation, or both, can vary as a function of time. One example is the
connection between two links in a double-pendulum. Two frames, one on each link,
connect with a joint that allows their spatial relationship to vary with time.

To add a time-varying transformation, you use joint blocks. These blocks allow frame
transformations to vary with time. The transformations can arise from model dynamics
and joint actuation inputs, the latter of which include force, torque, and motion variables.

 Working with Frames

1-5

Frame Networks

Rigid body subsystems generally have multiple frames. For example, a binary link—one
with two connection points—contains two frames, each identifying a connection point.
More complex rigid bodies may have yet more frames. In fact, SimMechanics imposes
no limit on the number of frames a rigid body can have. You can add as many frames as
your application requires.

The set of frames that belong to a rigid body form a frame network. Like other networks,
it is often convenient to organize frames hierarchically. You can, for example, organize
the frames of a binary link such that its two joint frames are defined with respect to
the geometry center frame. In this simple example, the frame network contains two
hierarchical levels: a top level containing the geometry center frame, and a lower level
containing two joint frames. More complex rigid bodies generally have more hierarchical
levels.

The top hierarchical level contains the parent frame. Lower hierarchical levels contain
children frames. Children frames can in turn contain their own children frames. All
frames in a frame network depend, directly or indirectly, on the parent frame. This
dependence exists because the sequence of frame transformations used to define a frame
must ultimately reference the parent frame.

More About
• “Frame Transformations” on page 1-17
• “Representing Frames” on page 1-6
• “Motion Sensing” on page 4-44

1 Spatial Relationships

1-6

Representing Frames

In this section...

“Identity Relationships” on page 1-7
“Translation and Rotation” on page 1-8
“Interpreting a Frame Network” on page 1-8

You represent frames with frame ports, lines, and nodes. Each of these frame entities
represents one frame. You connect one frame entity to any other using a connection
line. When you do so, you apply a spatial relationship between the two frames. Spatial
relationships that you can specify include:

• Identity — Make two frames coincident with each other.
• Translation — Maintain an offset distance between two frame origins.
• Rotation — Maintain an angle between two frames.

The figure illustrates these spatial relationships. Letters B and F represent the two
frames between which you apply a spatial relationship.

A frame port is any port with the frame icon . A frame line is any connection line that
joins two frame ports. A frame node is the junction point between two or more frame
lines. You can connect one frame entity only to another frame entity. Connecting frame
ports, lines, or nodes to other types of ports, lines, or nodes is invalid. For example, you
cannot connect a frame port to a physical signal port.

 Representing Frames

1-7

Identity Relationships

To make two frames coincident in space, connect the corresponding frame entities with a
frame line. The frame line applies a rigid identity relationship between the two frames.
During simulation, the two frames can move only as a single unit. They cannot move
with respect to each other. The figure shows three ways to make two frames coincident.

Alternatively, use the Weld Joint block to make two frames coincident for all time.
The Weld Joint block fixes the relative positions and orientations of frames belonging to
different rigid bodies.

1 Spatial Relationships

1-8

Note: Ensure each joint frame port connects rigidly to a Solid or Inertia block. The
connection can be direct, through a connection line, or indirect, through one or more
Rigid Transform blocks. Joint frame ports not rigidly connected to components with
inertia (those containing at least one Solid or Inertia block) can cause a degenerate-mass
error during simulation.

Translation and Rotation

To separate two frames in space, you use the Rigid Transform block. By connecting
two frame entities to the base and follower frame ports of this block, you apply the rigid
transformation that the block specifies. Rigid transformations include translation and
rotation.

You can apply an offset distance between two frame origins, a rotation angle between the
frame axes, or both. Two frames that you connect using a Rigid Transform block behave
as a single entity. If you specify neither translation or rotation, the Rigid Transform
block represents the identity relationship. The two frames become coincident in space.
In the figure, a Rigid Transform block applies a rigid transformation between two solid
reference frames.

Interpreting a Frame Network

As an example, consider the frame network of a binary link. SimMechanics provides
a model of this rigid body. To open it, at the MATLAB® command prompt, enter
sm_compound_body. Double-click the Compound Body subsystem block to view the
underlying block diagram. The figure shows this diagram.

 Representing Frames

1-9

To represent the binary link, the Compound Body subsystem contains three Solid blocks.
The blocks represent the main, peg, and hole sections. Three frames provide the position
and orientation of the three solids according to the guidelines that section “Identity
Relationships” on page 1-7 introduces. Each group of frame ports, lines, and nodes
that directly connect to each other represents one frame. The figure shows the three
frames in the block diagram.

1 Spatial Relationships

1-10

Two Rigid Transform blocks represent the spatial relationships between the three
frames. One block translates the hole frame with respect to the reference frame along the
common -X axis. The other block translates the peg frame with respect to the reference
frame along the common +X axis. The figure shows these two blocks.

Related Examples
• “Represent Box Frame Tree” on page 1-37
• “Represent Binary Link Frame Tree” on page 1-33

More About
• “Working with Frames” on page 1-2
• “Frame Transformations” on page 1-17
• “World and Reference Frames” on page 1-11
• “Find and Fix Frame Issues” on page 1-56

 World and Reference Frames

1-11

World and Reference Frames

In this section...

“World Frame” on page 1-11
“Reference Frame” on page 1-14

Two preset frames are available in SimMechanics: World and Reference. These are
standalone frames with respect to which you can define other frames in a model. New
frames can in turn serve as the basis to define yet other frames. However, directly or
indirectly, all frames depend on either World or Reference frames. Both frames are
available as blocks in the Frames and Transforms library.

World Frame

The World frame represents the external environment of a mechanical system. It is
always at absolute rest, and therefore experiences zero acceleration. As a consequence,
centripetal and other pseudo-forces are not present in the world frame, and it is said
to be inertial. Rigidly connecting any frame to the World frame makes that frame also
inertial. To add the World frame to a model, use the World Frame block.

The World frame is the ultimate reference frame. Its position and orientation are
predefined and do not depend on any other frame. This property makes the World frame

1 Spatial Relationships

1-12

invaluable. You can always apply a transform to the World frame and obtain a new
frame. Applying a transform to the resulting frame in turn yields more new frames, all
indirectly related to the World frame. The result is a frame tree with the World frame at
the root. The figure shows such a frame tree for a double-pendulum system.

The double-pendulum block diagram is based on this frame tree. The World Frame
block identifies the root of the frame tree. A Revolute Joint block applies the variable
transform that relates the World frame to the binary link peg frame. A second Revolute
Joint block applies a similar variable transform between the hole and peg frames of
adjoining binary links. The figure shows this block diagram.

 World and Reference Frames

1-13

The World frame is present in every model. However, the World Frame block is strictly
optional. If you do not add this block to a model, SimMechanics assigns one of the
existing frames as the World frame. This implicit World frame connects to the rest of the
model via an implicit 6-DOF joint, which in the absence of counteracting forces allows a
machine to fall under gravity.

You can connect multiple World Frame blocks to a model. However, all World Frame
blocks represent the same frame. In this sense, the World frame is unique. You can
add multiple World Frame blocks to simplify modeling tasks, e.g., sensing motion with
respect to the World frame. The figure shows the model of a double-pendulum with two
World Frame blocks. Both World Frame blocks represent the same frame.

1 Spatial Relationships

1-14

Reference Frame

The Reference frame represents the root of a rigid body or multibody subsystem. Within
a subsystem, it denotes the frame against which all remaining frames are defined. To
add a Reference frame, use the Reference Frame block. Use this block to mark the top
level of a subsystem frame tree.

Applying a transform to the Reference frame yields other frames. Applying transforms to
these other frames yields still more frames. The overall set of frames forms a frame tree
with the Reference frame at the root. The figure shows such a frame tree for one of the
binary links used in the double-pendulum system.

 World and Reference Frames

1-15

The block diagram of the binary link subsystem is based on this frame tree. The following
figure shows the binary link block diagram. The Reference Frame block identifies
the root of the frame tree. Rigid Transform block to_hole adds the hole frame. Rigid
Transform block to_peg adds the peg frame. It is a simple task to add the main, peg, and
hole solids once these frames are defined.

1 Spatial Relationships

1-16

The distinguishing feature of the Reference frame is that it can move with respect to
other frames. Depending on the dynamics of a model, a Reference frame can accelerate,
giving rise to pseudo-forces that render this frame non-inertial. Rigidly connecting any
frame to a non-inertial Reference frame makes that frame also non-inertial.

The Reference frame is present in every subsystem. However, the Reference Frame block
is strictly optional. If you do not add this block to a subsystem, SimMechanics assigns
one of the existing frames as the Reference frame.

More About
• “Working with Frames” on page 1-2
• “Frame Transformations” on page 1-17
• “Representing Frames” on page 1-6

 Frame Transformations

1-17

Frame Transformations

In this section...

“Rigid and Time-Varying Transformations” on page 1-17
“Rigid Transformation Example” on page 1-19
“Reversing Rigid Transformations” on page 1-22

To place a solid in space, with a given position and orientation, you use frames. By
connecting the solid reference frame to another frame, you resolve its position and
orientation within the model. For example, connecting the solid reference frame directly
to the World frame causes their origins and axes to coincide. However, if the model does
not yet contain the desired frame, you must first add it.

Adding a frame is the act of defining its position and orientation. Because these
properties are relative, you must always define a frame with respect to another frame.
Every model starts with one of two frame blocks you can use as reference: World Frame
or Reference Frame. As a model grows, so does the number of frames that you can use as
a reference.

Rigid and Time-Varying Transformations

The spatial relationship between the two frames, the existing and the new, is called
a frame transformation. When the transformation is fixed for all time, it is rigid.
Two frames related by a rigid transformation can move with respect to the world, but
never with respect to each other. In SimMechanics, you add a frame by applying a
rigid transformation to an existing frame. The block you use for this task is the Rigid
Transform block.

1 Spatial Relationships

1-18

Frame transformations can also vary with time. In this case, the two frames that the
transformation applies to can move with respect to each other. In SimMechanics, joint
blocks provide the degrees of freedom that allow motion between two frames. Depending
on the joint block, frames can move along or about an axis. For example, the Revolute
Joint block allows two frames to rotate with respect to each other about a common +Z
axis. Likewise, the Prismatic Joint block allows two frames to rotate with respect to
each other along a common +Z axis. For more information about joints, see “Modeling
Joint Connections” on page 3-2.

You can apply two rigid transformations: rotation and translation. Rotation changes the
orientation of the follower frame with respect to the base frame. Translation changes

 Frame Transformations

1-19

the position of the follower frame with respect to the base frame. A third, implicit,
transformation is available—identity. This transformation is marked by the absence
of both frame rotation and translation, making base and follower frames coincident in
space.

Every rigid transformation involves two frames: a base and a follower. The base frame
is a reference, the starting point against which you define the new frame. Any frame can
act as the base frame. When you apply a rigid transformation, you do so directly to the
base frame. The follower frame is the new frame — the transformed version of the base
frame. The Rigid Transform block identifies base and follower frames with frame ports B
and F, respectively.

Rigid Transformation Example

As an example, consider a binary link. You can model this rigid body with three
elementary solids: main body, peg, and hole sections. This type of rigid body is known
as compound. Each solid has a local reference frame, which is fixed with respect to the
solid, but which can move with respect to the world. The figure shows the binary link
compound rigid body and the three solids that comprise it.

1 Spatial Relationships

1-20

When modeling the binary link, the goal is to place the peg at one end of the link, and
the hole section at the other end. The proper approach is to apply a rigid transformation
between the main peg and peg reference frames, and main body and hole section
reference frames. The transformations specify the separation distance and rotation
angle, if any, between each pair of frames. Because the transformations are rigid, they
constrain the solids to move as a single unit — a rigid body. The rigidly connected solids
can move together with respect to the World frame, but never with respect to each other.

The figure shows the set of transformations used to model the binary link. These include
translation, rotation, and identity. No Rigid Transform block is required to apply an
identity transformation. See “Representing Frames” on page 1-6.

 Frame Transformations

1-21

The block diagram, shown in the following figure, reflects the structure of the binary
link. Three Solid blocks represent the main body, peg, and hole sections. Their R ports
identify the respective reference frames. Two Rigid Transform blocks, named to_hole and
to_peg apply the rigid transformations that relate the solid pairs main–hole and main–
peg.

1 Spatial Relationships

1-22

Reversing Rigid Transformations

Rigid transformations describe the operation that takes the base frame into coincidence
with the follower frame. In this sense, the transformation acts on the base frame.
Switching base and follower port frames causes the transformation to act on a different
frame, changing the relationship between the two frames. The result is a follower frame
with different position and orientation and, as a consequence, a different rigid body
subsystem.

Consider the binary link system. In the original configuration, rigid transformations
translate the peg to the right of the main body and the hole to the left. To accomplish
this, the main body frame connects to the base port frame of the corresponding Rigid
Transform blocks, while the hole and peg frames connect to the follower port frames.
When you switch base and follower frame ports, the transformations instead translate
the main body to the right of the peg and to the left of the hole.

 Frame Transformations

1-23

While in the first case the peg translated to the right of the main body, in the second case
the peg translated to the left. The same principle applies to the hole. The figure shows
the effect of switching base and follower frames in both Rigid Transform blocks of the
binary link block diagram.

1 Spatial Relationships

1-24

Related Examples
• “Represent Binary Link Frame Tree” on page 1-33

 Rotation Methods

1-25

Rotation Methods

In this section...

“Specifying Rotation” on page 1-25
“Aligned Axes” on page 1-25
“Standard Axis” on page 1-26
“Arbitrary Axis” on page 1-27

You can specify frame rotation using different methods. These include aligned axes,
standard axis, and arbitrary axis. The different methods are available through the Rigid
Transform block. The choice of method depends on the model. Select the method that is
most convenient for the application.

Specifying Rotation

Rotation is a relative quantity. The rotation of one frame is meaningful only with respect
to another frame. As such, the Rigid Transform block requires two frames to specify a
transformation: base and follower. The transformation operates on the base frame. For
example, a translation along the +Z axis places the follower frame along the +Z axis from
the base frame. Reversing frame ports is allowed, but the transformation is reversed: the
base frame is now placed along the +Z axis from the follower frame.

Aligned Axes

Rotate two frames with respect to each other by aligning any two axes of one with any
two axes of the other. The figure illustrates the aligned axes method.

1 Spatial Relationships

1-26

Standard Axis

Rotate frames with respect to each other about one of the three base frame axes: X, Y, or
Z.

 Rotation Methods

1-27

Arbitrary Axis

Rotate two frames with respect to each other about an arbitrary axis resolved in the base
frame.

1 Spatial Relationships

1-28

 Translation Methods

1-29

Translation Methods

In this section...

“Specifying Translation” on page 1-29
“Cartesian” on page 1-29
“Standard Axis” on page 1-30
“Cylindrical” on page 1-31

You can specify frame translation using different methods. These include Cartesian,
standard axis, and cylindrical. The different methods are available through the Rigid
Transform block. The choice of method depends on the model. Select the method that is
most convenient for the application.

Specifying Translation

Translation is a relative quantity. The translation of one frame is meaningful only with
respect to another frame. As such, the Rigid Transform block requires two frames to
specify a translation: base and follower. The transformation operates on the base frame.
For example, a translation along the +Z axis places the follower frame along the +Z
axis from the base frame. Reversing frame ports is allowed, but the transformation is
reversed: the base frame is now placed along the +Z axis from the follower frame.

Cartesian

Translate follower frame along arbitrary Cartesian vector resolved in the base frame.

1 Spatial Relationships

1-30

Standard Axis

Translate follower frame along one of the three axes of the base frame.

 Translation Methods

1-31

Cylindrical

Translate follower frame along cylindrical axes resolved in the base frame.

1 Spatial Relationships

1-32

 Represent Binary Link Frame Tree

1-33

Represent Binary Link Frame Tree

In this section...

“Model Overview” on page 1-33
“Build Model” on page 1-34
“Generate Binary Link Subsystem” on page 1-35
“Visualize Model” on page 1-36
“Open Reference Model” on page 1-36

Model Overview

In this example, you model the frame tree of a binary link. This tree contains three
frames to which you later connect solid elements. You specify these frames using the
Rigid Transform block.

You can promote subsystem reusability by parameterizing link dimensions in terms of
MATLAB variables. In this example, you initialize the variables in a subsystem mask.
You then specify their numerical values in the subsystem dialog box. The table shows the
variables used in this example.

Dimension MATLAB Variable

Length L

Width W

1 Spatial Relationships

1-34

Dimension MATLAB Variable

Thickness T

Build Model

1 Drag these blocks into a new model.

Block Quantity Library

Rigid Transform 2 Frames and Transforms
Solver Configuration 1 Simscape™ Utilities

2 Connect and name the blocks as shown in the figure.

Note: You must connect the frame ports exactly as shown in the figure. Ensure the
base frame ports connect directly to each other. If they do not, the frames created
will differ from this example.

3 In the Rigid Transform block dialog box, specify these parameters.

Parameter Setting

Translation > Method Select Standard Axis.
Translation > Axis Select -X.
Translation > Offset Enter L/2. Select units of cm.

4 In the Rigid Transform1 block dialog box, specify these parameters.

 Represent Binary Link Frame Tree

1-35

Parameter Setting

Translation > Method Select Cartesian.
Translation > Offset Enter [L/2 0 3/2*T]. Select units of

cm.

Generate Binary Link Subsystem

To initialize the MATLAB dimension variables used to specify the frame transforms,
convert the binary link block diagram into a subsystem and use the subsystem mask:

1 Select all the blocks excluding Solver Configuration.
2 Generate a new subsystem, e.g., by pressing Ctrl+G.

3 Create a subsystem mask, e.g., by selecting the Subsystem block and pressing Ctrl
+M.

4 In the Parameters & Dialog tab, add three Edit fields to the Parameters folder.
Then, specify the following parameters and click OK.

Prompt Name

Length L

Width W

Thickness T

5 In the Subsystem dialog box, specify these parameters.

Parameter Value

Length 30

1 Spatial Relationships

1-36

Parameter Value

Width 2

Thickness 0.8

Visualize Model

Update the block diagram. You can perform this task from the Simulink® Editor menu
bar, by selecting Simulation > Update Diagram. Then, in the Mechanics Explorer
menu bar, select View > Show Frames. The visualization pane shows the binary link
frame tree.

Open Reference Model

To see a completed version of the frame tree model, at the MATLAB command prompt
enter smdoc_binary_link_frames.

Related Examples
• “Model Binary Link” on page 2-74

 Represent Box Frame Tree

1-37

Represent Box Frame Tree

In this section...

“Model Overview” on page 1-37
“Start Model” on page 1-39
“Initialize Model Workspace Parameters” on page 1-40
“Add Bottom Plane Frames” on page 1-41
“Add Top Plane Frames” on page 1-44
“Add Arch Frames” on page 1-47
“Save Model” on page 1-51

Model Overview

In SimMechanics, you can rigidly connect multiple Solid blocks to represent a complex
rigid body. To position and orient different solids with respect to each other, you create
a frame network that you can connect the solids to. The frame network contains Rigid
Transform blocks that specify the spatial relationships between the different frames. In
this example, you represent the frame tree for a box shape.

1 Spatial Relationships

1-38

The example highlights the Rigid Transform block as the basic tool that you use to
specify spatial relationships between frames and the solids that connect to them.
The complete frame network is complex. It highlights nearly every type of rigid
transformation that you can apply between two frames.

The modeling process in this example contains four stages:

1 Add World Frame (W).

This is the ultimate reference frame against which you define all other frames.
2 Add the frames of the box bottom plane (frames A-D in the figure).

You define these frames directly with respect to the World frame.
3 Add the frames of the box top plane (frames E-I in the figure).

You define these frames directly with respect to the box bottom plane frames.
4 Add the frames of the box arch (frames K and J in the figure).

You define these frames directly with respect to the center frame of the box top
plane.

 Represent Box Frame Tree

1-39

This example is based on model sm_frame_tree, which accompanies your
SimMechanics installation. To open this model, at the MATLAB command line, enter
sm_frame_tree.

Start Model

Start a new model. Then, add a global reference frame that you can use to define other
frames.

Use the World Frame block to represent the World frame:

1 Start a new model.
2 Drag the following blocks into the model.

Library Block Quantity

Frames and Transforms World Frame 1
Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

1 Spatial Relationships

1-40

Initialize Model Workspace Parameters

To specify the distance offsets between frames, you use Rigid Transform blocks. In
this example, you specify the distance offsets in terms of MATLAB variables that you
initialize in the model workspace. The table lists these variables.

Dimension Variable

Length L

Width W

Height H

To initialize the MATLAB variables:

1 On the Simulink menu bar, click Tools > Model Explorer.
2 On the Model Hierarchy pane, double-click the name of your model (e.g.

frame_tree).

 Represent Box Frame Tree

1-41

3 Click Model Workspace.
4 On the Model Workspace pane, in the Data Source drop-down list, select MATLAB

Code.
5 In the MATLAB Code section that appears, enter the following code:

% Size of Cube

L = 12;

W = 10;

H = 8;

6 Click Reinitialize from Source.

Add Bottom Plane Frames

The World frame is the ultimate reference frame in a model. Now that you added the
World frame to your model, you can define other frames with respect to it. You do this
using the Rigid Transform block.

To define the four corner frames of the bottom box plane:

1 From the Frames and Transforms library, drag four Rigid Transform blocks to the
model.

2 Connect and name the blocks as they appear in the figure.

1 Spatial Relationships

1-42

3 Double-click the Vertex W-A Transform block and, in the dialog box, specify the
parameters that the table provides.

Parameter Section Parameter Value

Method Select Standard Axis
Axis Select +Z

Rotation

Angle Enter 90 (deg)
Method Select CartesianTranslation
Offset Enter [L/2 W/2 0] (cm)

4 Double-click the Vertex W-B Transform block and, in the dialog box, specify the
parameters that the table provides.

 Represent Box Frame Tree

1-43

Parameter Section Parameter Value

Method Select Aligned Axis
Pair 1 > Follower/Base Select +X/-X

Rotation

Pair 2 > Follower/Base Select +Y/-Y
Method Select CartesianTranslation
Offset Enter [-L/2 W/2 0] (cm)

5 Double-click the Vertex W-C Transform block and, in the dialog box, specify the
parameters that the table provides.

Parameter Section Parameter Value

Method Select Standard Axis
Axis Select +Z

Rotation

Angle Enter 270 (deg)
Method Select CartesianTranslation
Offset Enter [-L/2 -W/2 0] (cm)

6 Double-click the Vertex W-D Transform block and, in the dialog box, specify the
parameters that the table provides.

Parameter Section Parameter Value

Rotation Method Select None
Method Select CartesianTranslation
Offset Enter [L/2 -W/2 0] (cm)

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer opens with a static 3-D display
of your model. To view the position and orientation of each frame, in the Mechanics
Explorer menu bar, select View > Show Frames.

1 Spatial Relationships

1-44

Add Top Plane Frames

You can now define the top plane frames with respect to the bottom plane frames.

 Represent Box Frame Tree

1-45

To add the top plane frames:

1 From the Frames and Transforms library, drag five Rigid Transform blocks.
2 Connect and name the blocks as they appear in the figure.

3 Double-click the following blocks:

• Vertex A-E Transform
• Vertex B-F Transform
• Vertex C-G Transform
• Vertex D-H Transform

4 In each block dialog box, specify the following parameters.

1 Spatial Relationships

1-46

Parameter Section Parameter Value

Rotation Method Select None
Method Select Standard Axis
Axis +Z

Translation

Offset Enter H (cm)

5 Double-click the Vertex W-I Transform block and, in the dialog box, specify the
following parameters.

Parameter Section Parameter Value

Method Select Aligned Axes
Pair 1 > Follower/Base Select +Y/-Z

Rotation

Pair 2 > Follower/Base Select +Z/+Y
Method Select Standard Axis
Axis +Z

Translation

Offset Enter H (cm)

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer updates the 3-D view of the box
frame tree.

 Represent Box Frame Tree

1-47

Add Arch Frames

Finally, add the two arch frames. As before, use the Rigid Transform block to define
these frames. Define them with respect to the center frame of the top plane (frame I).

1 Spatial Relationships

1-48

To define the arch frames:

1 From the Frames and Transforms library, drag two Rigid Transform blocks.
2 Connect and name the blocks as they appear in the figure.

 Represent Box Frame Tree

1-49

3 Double-click the Vertex I-J Transform block and, in the dialog box, specify the
parameters that the table provides.

Parameter Section Parameter Value

Method Select Standard Axis
Axis Select +Z

Rotation

Angle Enter -90 (deg)

1 Spatial Relationships

1-50

Parameter Section Parameter Value

Method Select Cylindrical
Radius Enter L/2 (cm)
Theta Enter -90 (deg)

Translation

Z Offset Enter W/2 (cm)

4 Double-click the Vertex I-K Transform block and, in the dialog box, specify the
parameters that the table provides.

Parameter Section Parameter Value

Method Select Standard Axis
Axis Select +Z

Rotation

Angle Enter -90 (deg)
Method Select Cylindrical
Radius Enter L/2 (cm)
Theta Enter -90 (deg)

Translation

Z Offset Enter -W/2 (cm)

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer opens with a static 3-D display
of your model. To view the position and orientation of each frame, on the Mechanics

Explorer tool bar, check that the frame visibility icon is toggled on.

 Represent Box Frame Tree

1-51

Save Model

Save the model as frame_tree in a convenient folder. In a subsequent example, you use
Graphic blocks to represent each frame with a graphic icon. See “Visualize Box Frame
Tree” on page 1-52

Related Examples
• “Visualize Box Frame Tree” on page 1-52
• “Represent Binary Link Frame Tree” on page 1-33

More About
• “Representing Frames” on page 1-6
• “Frame Transformations” on page 1-17
• “World and Reference Frames” on page 1-11

1 Spatial Relationships

1-52

Visualize Box Frame Tree
In this section...

“Model Overview” on page 1-52
“Build Model” on page 1-52
“Visualize Model” on page 1-54

Model Overview

To visualize a frame or frame network, you can use the Graphic block. By connecting
this block to a frame, you add a graphic icon to that frame. The graphic icon has zero
inertia and it does not affect model dynamics during simulation. In this example, you use
Graphic blocks to add graphic icons to the box frame tree that you modeled in a previous
example. See “Represent Box Frame Tree” on page 1-37.

Build Model

To add a graphic icon to each frame in your model:

 Visualize Box Frame Tree

1-53

1 Open model frame_tree.

This is the model that you created in example “Represent Box Frame Tree” on page
1-37.

2 From the Body Elements library, drag 12 Graphic blocks to that model.
3 Connect and name the blocks as they appear in the figure.

4 Double-click each Graphic block.
5 In the dialog box, specify parameters according to the following table.

1 Spatial Relationships

1-54

Graphic Block Color Shape Size

World Frame
Graphics

Sphere

Vertex I Graphics

[0.4 0.4 0.4]

Vertex A Graphics
Vertex E Graphics

[1.0 0.0 0.0]

Vertex B Graphics
Vertex F Graphics

[0.0 0.0 1.0]

Vertex C Graphics
Vertex G Graphics

[0.0 0.6 0.2]

Vertex D Graphics
Vertex H Graphics

[1.0 1.0 0.0]

Vertex J Graphics [1.0 0.4 0.0]

Vertex K Graphics [0.6 0.0 0.6]

Cube

25

Visualize Model

You can now visualize your model in Mechanics Explorer. To do this, on the Simulink
menu bar, select Simulation > Update Diagram. Mechanics Explorer opens with a
static 3-D display of your model. Rotate, pan, and zoom to explore.

 Visualize Box Frame Tree

1-55

Related Examples
• “Represent Box Frame Tree” on page 1-37
• “Represent Binary Link Frame Tree” on page 1-33

More About
• “Representing Frames” on page 1-6
• “Frame Transformations” on page 1-17

1 Spatial Relationships

1-56

Find and Fix Frame Issues

In this section...

“Rigidity Loops” on page 1-56
“Shorted Rigid Transform Blocks” on page 1-57

If your model contains an invalid frame connection, SimMechanics issues an error and
the model does not simulate. Possible error sources include:

• Rigidity loops — Rigidly connecting multiple frames in a closed loop
• Shorted Rigid Transform Blocks — Rigidly connecting base and follower frame ports

of a Rigid Transform block

Rigidity Loops

A rigidity loop is a closed loop of Rigid Transform blocks. The loop contains one
redundant Rigid Transform block that over-constrains the subsystem. If a rigidity loop is
present, SimMechanics issues an error and the model does not simulate.

To remove the simulation error, disconnect one Rigid Transform block. This step removes
the redundant constraint, and allows the model to simulate. The following figure shows
a rigidity loop. The loop contains four Rigid Transform blocks directly connected to each
other.

 Find and Fix Frame Issues

1-57

Shorted Rigid Transform Blocks

A shorted Rigid Transform block contains a direct connection line between base (B) and
follower frames (F). The connection line makes the two port frames coincident in space.
However, the Rigid Transform block enforces a spatial transformation that translates
or rotates one port frame relative to the other. The result is a conflict in the frame
definition.

If a shorted Rigid Transform block is present, SimMechanics issues an error and the
model does not simulate. The error remains even if the Rigid Transform block specifies
no rotation and no translation. To remove the simulation error, delete the direct
connection line between base and follower frame ports of the Rigid Transform block. The
following figure shows a shorted Rigid Transform block.

Related Examples
• “Represent Box Frame Tree” on page 1-37
• “Represent Binary Link Frame Tree” on page 1-33

More About
• “Representing Frames” on page 1-6
• “Frame Transformations” on page 1-17

2

Rigid Bodies

• “SimMechanics Bodies” on page 2-2
• “Solid Geometries” on page 2-9
• “Solid and Body Visualization” on page 2-13
• “Revolution and General Extrusion Shapes” on page 2-17
• “Solid Inertia” on page 2-21
• “Specify Custom Inertia” on page 2-27
• “Interactively Create Solid Frames” on page 2-35
• “Solid Color” on page 2-45
• “Model Cone” on page 2-50
• “Model Dome” on page 2-56
• “Model I-Beam” on page 2-62
• “Model Box Beam” on page 2-68
• “Model Binary Link” on page 2-74
• “Model Two-Hole Binary Link” on page 2-82
• “Model Pivot Mount” on page 2-88

2 Rigid Bodies

2-2

SimMechanics Bodies

In this section...

“Rigid Body Essentials” on page 2-2
“Rigid Body Properties” on page 2-3
“Rigid Body Frames” on page 2-4
“Rigid Body Delimitation” on page 2-5
“Simple and Compound Rigid Bodies” on page 2-7

Rigid Body Essentials

Bodies are the basic components of a SimMechanics model. They are the parts that
you interconnect with joints and constraints to model an articulated mechanism or
machine. As an example, a four-bar linkage contains four bodies, each a binary link,
which interconnect via four revolute joints. The figure shows the four bodies, labeled A–
D.

In a SimMechanics model, all bodies are rigid. They are idealizations in which internal
strains always equal zero. True rigid bodies do not exist in nature but, under normal
operating conditions, many engineered components behave as approximately rigid bodies
—that is, with negligible deformation. In general, the rigid-body approximation provides
accurate modeling results whenever the expected deformation is much smaller than the
characteristic length of the modeled system.

 SimMechanics Bodies

2-3

Rigid Body Properties

Solid properties determine the appearance and behavior of a rigid body. For example, the
moments and products of inertia determine the angular acceleration of a free rigid body
in response to an applied torque. In SimMechanics, solid properties fall into three groups
—geometry, inertia, and graphic—each with group-specific parameters. The figure lists
these properties.

To specify the solid properties of a rigid body, you use the blocks in the Body Elements
library. The library contains three blocks, of which Solid is the most frequently used.
This block enables you to specify all the solid properties of a rigid body in a single place.
The remaining blocks, Inertia and Graphic, serve special cases, such as visualizing
certain frames and modeling mass disturbances.

The table summarizes the primary purposes of the Body Elements blocks.

Block Purpose

Solid Specify the solid properties—geometry,
inertia, graphic—of a simple rigid body or
of part of a compound rigid body.

Inertia Specify the inertial properties of a mass
element, such as a mass disturbance
present in rigid bodies.

Graphic Select a graphical icon to visualize any
SimMechanics frame in a model.

2 Rigid Bodies

2-4

Rigid Body Frames

In SimMechanics, rigid bodies have frames, each identifying a position and orientation
in 3-D space. These frames are important to the SimMechanics modeling workflow. They
enable you to specify the correct position and orientation for each of the following tasks:

• Connect joints and constraints between rigid bodies. For example, you always connect
a revolute joint between two frames in separate rigid bodies (or, alternatively,
between a rigid body frame and the world frame).

• Apply forces and torques to or between rigid bodies. For example, you always apply an
external force and torque to a single frame in a rigid body.

• Sense motion, forces, and torques between rigid bodies. For example, you always
sense the relative position coordinates between two frames on different rigid bodies
(or, alternatively, between a rigid body frame and the world frame).

The Solid block, the main component of any body subsystem, provides a reference frame
through frame port R. You can create additional frames in the Solid block dialog box
using its frame-creation interface. This interface is accessible from the Frames area of
the Solid block dialog box. The Solid block adds a frame port for every frame that you
create.

Drawing a frame connection line between frame ports on different Solid blocks makes
the port frames coincident in space. You can translate and rotate these frames relative to
each other by adding a Rigid Transform block to the connection line. This block enables
you to specify the pose of the follower frame relative to the base frame.

The figure shows an example of a rigid body subsystem in Mechanics Explorer. The rigid
body is a binary link with three frames, each associated with a solid section of the link—
hole, main, and peg. Rigid transforms specify the translational offset between each pair
of frames.

 SimMechanics Bodies

2-5

In the binary-link block diagram, Rigid Transform blocks specify the translation
transforms between the three frames. A total of two such blocks are needed, one between
each pair of frames. The following figure shows the binary link block diagram.

For more information on this rigid body subsystem, see “Model Binary Link” on page
2-74

Rigid Body Delimitation

In a SimMechanics model, a set of Solid and Rigid Transform blocks between two joint
blocks or between one joint block and the World Frame block constitutes a rigid body.
During simulation, SimMechanics software computes the center of mass for each such
block subset. Gravitational Field blocks in your model, if any, then apply a gravitational
force at the calculated centers of mass.

If you connect two halves of a rigid body using a Weld Joint block, the SimMechanics
model treats the two halves as rigidly connected but independent rigid bodies. Any

2 Rigid Bodies

2-6

Gravitational Field blocks in your model then exert a gravitational force at the center of
mass of each half. This strategy enables you to account for gravitational torques acting
on a rigid component, such as an asteroid orbiting the Sun.

The figure shows a simple-pendulum model. In this model, a subsystem block neatly
encapsulates each rigid body. The model contains two rigid bodies: a pivot mount and a
binary link. A joint block separates the mount and the link.

The following figure shows the same model without subsystem blocks. The model treats
the blocks on either side of the Revolute Joint block as separate rigid bodies. The blocks
to the left of the joint block represent the pivot mount, while the blocks to the right of the
joint block represent the binary link.

If you connect a Weld Joint block between the Main and Rigid Transform1 blocks, the
SimMechanics model recognizes three rigid bodies:

• Rigid body I to the left of the Revolute Joint block.
• Rigid body II between the Revolute Joint and Weld Joint blocks.
• Rigid body III to the right of the Weld Joint block.

 SimMechanics Bodies

2-7

The following figure shows the modified model with the Weld Joint block. The
Mechanism Configuration, World Frame, and Solver Configuration blocks are omitted to
conserve space.

Simple and Compound Rigid Bodies

Rigid bodies can be simple or compound. The difference between the two rigid body types
lies in their complexity. Simple rigid bodies typically have basic shapes, uniform mass
distributions, and a single color. Compound rigid bodies have more complex shapes and,
occasionally, segmented mass distributions that require multiple Solid blocks to model.

Consider a binary link, the basic component of mechanical linkages such as the double
pendulum and the four-bar mechanism. Depending on the level of detail you want to
incorporate in your model, you can treat the binary link as a simple rigid body or as a
compound rigid body:

• Simple — Approximate the rigid-body geometry using a standard SimMechanics
shape. For example, you can model the binary link using a brick shape with a uniform
mass distribution and a single color. The tutorial “Model Simple Link” shows this
approach.

• Compound — Model the rigid-body geometry accurately using multiple standard
shapes. For example, you can model the binary-link main, hole, and peg sections
using separate Solid blocks, each with its own shape and possibly its own inertial
properties and color. The tutorial “Model Binary Link” on page 2-74 shows this
approach.

2 Rigid Bodies

2-8

 Solid Geometries

2-9

Solid Geometries

In this section...

“Geometry Essentials” on page 2-9
“Compound Shapes” on page 2-9
“Basic Shapes” on page 2-10
“General Extrusion and Revolution Shapes” on page 2-11
“Imported Shapes” on page 2-12

Geometry Essentials

Geometry is one of three solid properties that you can specify in a SimMechanics model.
This property includes the shape of a rigid body and its size. For example, the geometry
of Earth consists of a spherical shape and an approximate radius of 6,370 km. Specifying
these parameters enables SimMechanics to perform two tasks:

• Set the visual appearance of a rigid body, excluding color and lighting, in Mechanics
Explorer.

• Automatically calculate the inertial properties of a rigid body, including the center of
mass, the moments of inertia, and the products of inertia.

You specify solid geometry using the Solid block. Solid shapes that you can specify range
from basic, such as a cylinder, to more sophisticated, such as a general extrusion. For
intricate shapes, you can also load solid geometry from external files. The following
figure shows examples of the different types of shapes.

Compound Shapes

Solid shapes are versatile but, used individually, limited. To make the most of solid
shapes, you must combine them using multiple Solid blocks. This approach yields a

2 Rigid Bodies

2-10

compound rigid body with an aggregate shape that can be more complex than a single
solid shape would allow. The binary link shown in the following figure is one example.

In this example, three Solid blocks provide the geometries of the binary-link sections
—the main body, the hole end, and the peg end. Two Rigid Transform blocks provide
the spatial relationships between the three binary-link sections, including their relative
positions and orientations. For more information, see “Model Binary Link” on page
2-74.

Basic Shapes

Often, you can model a rigid body using basic shapes. These are common, simple shapes,
such as sphere and cylinder, with parameterizations based on dimensions such as radius
and length. Such shapes enable you to quickly model a rigid body approximately—e.g.,
for quick, proof-of-concept models. The table lists the basic shapes that you can model
using the Solid block.

Shape Example Parameters

Cylinder • Length
• Radius

Sphere • Radius

Brick • Length
• Width
• Thickness

Ellipsoid • Ellipsoid radii along
semi-principal axes

 Solid Geometries

2-11

Shape Example Parameters

Regular Extrusion • Length
• Outer radius
• Number of sides

As an example, you can model a binary link using a brick shape. By using this
approximation, you can quickly move on to more important aspects of the modeling
workflow, such as multibody assembly. Once you have a working model, you can add
detail to the rigid bodies, e.g., by treating the binary links as compound rigid bodies with
more complex shapes.

For a tutorial showing how to model a binary link using a brick approximation, see
“Model Simple Link”.

General Extrusion and Revolution Shapes

To model more complex rigid bodies, the Solid block provides general-extrusion and
revolution shapes. These shapes enable you to model rigid bodies with arbitrary cross-
sections, such as I-shaped beams and circular domes. The parameterizations for
these shapes are more advanced and require detailed knowledge of the cross-section
coordinates. The table summarizes the differences between two shapes.

Shape Description Example Parameters

General extrusion Shape with a general
cross-section that
remains constant
along an extrusion
axis.

• Cross-section
coordinates

• Extrusion length

Revolution Shape with a general
cross-section that
remains constant
about a revolution
axis.

• Cross-section
coordinates

• Revolution angle

For tutorials showing how to model general-extrusion and revolution shapes, see:

• “Model I-Beam” on page 2-62
• “Model Dome” on page 2-56

2 Rigid Bodies

2-12

Imported Shapes

Instead of modeling a complex geometry manually, you can import it using one of two
file formats: STL and STEP. Files in these formats specify the surface geometries of 3-
D solids, albeit using different approaches. The table summarizes the key differences
between the two formats.

Geometry File Format Description

STL (Standard Tesselation Language) Provides the vertex coordinates and
normal-vector components for each triangle
segment in a tesselated 3-D surface.

STEP (Standard for Exchange of Product
Data)

Provides the analytical curves that describe
a 3-D surface. STEP files enable the Solid
block to automatically compute inertial
properties.

Note that these files do not specify graphic or inertial properties. You must specify those
properties separately. To generate the STL or STEP files, you must use an external
application, such as a CAD tool.

 Solid and Body Visualization

2-13

Solid and Body Visualization
In this section...

“Visualization Essentials” on page 2-13
“Solid Visualization” on page 2-13
“Body Visualization” on page 2-15

Visualization Essentials

Visualization is an integral part of the SimMechanics modeling workflow. You can render
a model graphically and examine its bodies and their interconnections—for example, to
ensure that solid geometries, colors, and spatial relationships are what you expect. To
visualize bodies and the solids that comprise them, you use one of the following:

• Solid block visualization pane — Visualize individual solids and their reference
port frames. Use the Solid block visualization pane to examine solid geometries and
colors without having to update or simulate the block diagram, a Mechanics Explorer
requirement.

• Mechanics Explorer — Visualize multibody systems, the bodies that comprise the
systems, and the solids that comprise the bodies. Use Mechanics Explorer if you
must visualize more than one solid at a time, or if the spatial relationships between
different frames are important to you.

Solid Visualization

To visualize individual solids—for example, the binary link main section shown in the
“Model Binary Link” on page 2-74 tutorial—you use the embedded visualization pane
in the Solid block dialog box. This pane enables you to change Solid block parameters
and examine their effect on solid geometry and color near instantly without having
to open a separate window. Above the pane, the Solid block includes a visualization
toolstrip that you can use to:

• Update the visualization pane after a parameter change.
• Rotate, pan, and zoom the solid view.
• Select a standard view, such as Isometric, Front, Top, or Right.
• Toggle visualization on and off for the solid reference port frame. The position of the

frame varies for shapes such as General Extrusion and Revolution, making
frame visualization useful when deciding how to connect your solid in a model.

2 Rigid Bodies

2-14

Solid Block Visualization Pane

You do not need to update or simulate the block diagram—which means that you can
visualize a solid before the block diagram is complete. For example, you can visualize a
solid before connecting a Simscape Solver Configuration block to the SimMechanics
portion of the physical network. You can also visualize a solid before connecting the Solid
block to any other blocks on the model canvas.

You can visualize a solid even if you parameterize its properties in terms of MATLAB
variables—for example, entering a variable T in the Length parameter of a General
Extrusion shape. However, you must assign numerical values to your MATLAB
variables before the Solid block can render your solid. You can do this in a Simulink
Subsystem mask, or in the model workspace through Model Explorer. For examples, see:

• “Model Cone” on page 2-50
• “Model I-Beam” on page 2-62

Each time you change a Solid block parameter, you must select the Update Visualization

button —or press F5—in order to refresh the solid view in the visualization pane.

 Solid and Body Visualization

2-15

The Update Visualization button does not apply your changes to the model, giving you a
chance to verify them before you commit to them. To apply you parameter changes to the
model, you must select Apply.

Body Visualization

To visualize a body containing multiple solids—for example, the complete binary
link shown in the “Model Binary Link” on page 2-74 tutorial—you use Mechanics
Explorer. This visualization utility displays the entire contents of your model, enabling
you to examine not only solid geometries and colors, but also how solids connect in
compound bodies and how bodies connect in multibody systems.

Mechanics Explorer provides its own visualization toolstrip—similar to, but more
expansive than, the Solid block visualization toolstrip. You can use the toolstrip to:

• Start simulation or update the block diagram.
• Rotate, pan, and zoom the model view.
• Select a standard view, such as Isometric, Front, Top, or Right.
• Toggle visualization on and off for the frames and body centers of mass in your model.
• Split the visualization pane into tiles, each with a different model view.
• Change the view convention—for example, so the World frame Z axis points down on

your screen.
• Change the background color of the visualization pane.

2 Rigid Bodies

2-16

Mechanics Explorer Visualization Utility

To visualize a body or multibody system in Mechanics Explorer, you must update the
block diagram (Simulation > Update Diagram) or start simulation (Simulation >
Run). As a result, you must also ensure that your block diagram is valid. In particular,
you must connect a Simscape Solver Configuration block to the SimMechanics
portion of the model.

By default, when you update or simulate a model, Mechanics Explorer opens
automatically with a 3-D view of your model. Each time you change the block diagram
or a block parameter, you must update or simulate the model for Mechanics Explorer to
reflect your changes. For examples, see:

• “Model Binary Link” on page 2-74
• “Model Pivot Mount” on page 2-88

 Revolution and General Extrusion Shapes

2-17

Revolution and General Extrusion Shapes

In this section...

“Shape Cross Sections” on page 2-17
“Coordinate Matrices” on page 2-17
“Hollow Cross Sections” on page 2-18
“3-D Shape Generation” on page 2-19

Shape Cross Sections

Using General Extrusion and Revolution shapes, you can model solids with
arbitrary cross sections that remain constant along or about some axis. I-beam and cone
shapes are two examples. These shapes differ from simple shapes such as Brick and
Sphere in their requirement that you specify the cross-section coordinates explicitly. You
specify these coordinates in the Solid block dialog box in a matrix format.

Extrusion and Revolution Shapes

Coordinate Matrices

Coordinate matrices are M × 2 in size. Each row corresponds to a point on the cross-
section outline and each column corresponds to a coordinate on the cross-section plane. If
you specify a cross-section shape using ten points, the resulting coordinate matrix is 10 ×
2 in size.

The cross-section plane differs between General Extrusion and Revolution shapes.
That plane is the XY plane for general extrusion shapes and the XZ plane for revolution
shapes. Cross-section coordinates are therefore [X, Y] pairs for general extrusion shapes
and [X, Z] pairs for revolution shapes.

The Solid block generates the cross-section shape from your coordinate matrix by
connecting each point to the next with a straight line. If the last point is different from
the first point, the block connects the two in order to close the cross-section outline.

2 Rigid Bodies

2-18

The cross-section outline divides the solid region of your shape from the empty region
outside of it. To decide where the solid region is, the Solid block uses a special rule:
looking from one point to the next, the solid region must lie to the left of the connecting
line. The figure shows the application of this rule to an I-beam cross-section shape.

Hollow Cross Sections

Bodies are often hollow. A box beam is one example. You can model such bodies using
General Extrusion and Revolution shapes. As before, you must specify the
coordinate matrix as a continuous path so that, looking from one coordinate pair to the
next, the solid region lies to your left and the empty region lies to your right.

However, the path must now traverse not only the outer outline of the cross-section, but
also the outline of its hollow region. To do this, the path must cut across the solid portion
of the cross section. The figure shows such a cut.

The coordinate matrix for the outer cross-section outline is

outerCS X Y X Y X Y X Y X Y= ÈÎ ˘̊
1 1 2 2 3 3 4 4 1 1
, ; , ; , ; , ; .,

Similarly, the coordinate matrix for the inner cross-section outline is

 Revolution and General Extrusion Shapes

2-19

innerCS X Y X Y X Y X Y X Y= ÈÎ ˘̊
6 6 7 7 8 8 9 9 6 6
, ; ; , ; , ; , .

The complete coordinate matrix is then

CS outerCS innerCS= []; .

Note that outerCS traces the outer profile counterclockwise, while innerCS traces the
inner profile clockwise. You must reverse the order of the coordinates as you transition
between the two outlines in order to keep the solid region to the left of the cross-section
line.

Note also that, taken individually, outerCS and innerCS each trace a closed outline.
You must close each outline by ending its coordinate matrix on the first coordinate pair
for that outline. The Solid block automatically closes the overall cross-section profile by
connecting the last coordinate pair to the first. In doing so, the Solid block traces the first
cut at the same location and in reverse, ensuring that the cut thickness is zero.

3-D Shape Generation

The Solid block produces a 3-D shape from a cross-section outline by sweeping the outline
along or about the reference frame Z axis. The sweep amount is the same in the positive
and negative directions of the Z axis. The figure shows the directions and amounts of
sweep for a revolution shape and a general extrusion shape:

• For a general extrusion of thickness L, the block sweeps the cross-section outline by
L/2 along the positive and negative directions of the Z axis.

• For a revolution with a sweep angle of θ, the block sweeps the cross-section outline by
θ/2 about the positive and negative directions of the Z axis.

2 Rigid Bodies

2-20

The reference port frame of revolution and general extrusion solids has its origin at the
[0, 0] coordinate. This coordinate lies in the cross-section plane for a general extrusion
solid and in the revolution axis for a revolution solid.

 Solid Inertia

2-21

Solid Inertia

In this section...

“Inertial Properties” on page 2-21
“Blocks with Inertia” on page 2-21
“Inertia in a Model” on page 2-22
“Inertia Parameterizations” on page 2-23
“Custom Inertia” on page 2-23
“Moments and Products of Inertia” on page 2-24
“Complex Inertias” on page 2-26

Inertial Properties

Inertia is the resistance of matter to acceleration due to applied forces and torques.
The inertial properties of a body include its mass and inertia tensor—a symmetric 3×3
matrix that contains the moments and products of inertia. Mass resists translational
acceleration while the moments and products of inertia resist rotational acceleration.

Among the solid properties of a model, the inertial properties have the greatest impact on
multibody dynamics. Those that you must specify depend on the type of inertia you are
modeling—a point mass or a body with a 3-D mass distribution. They include one or more
of the following:

• Mass or density
• Center of mass
• Moments of inertia
• Products of inertia

In a SimMechanics model, these properties are time-invariant. Rigid bodies cannot gain
or lose mass nor can they deform in response to an applied force or torque. The mass
distribution of a body—and therefore its inertia tensor and center of mass—remain
constant throughout simulation.

Blocks with Inertia

You can model inertia using the following blocks:

2 Rigid Bodies

2-22

• Solid — Model a complete solid element with geometry, inertia, and color. This block
can automatically compute the moments of inertia, products of inertia, and center
of mass based on the solid geometry and mass or mass density. During simulation,
Mechanics Explorer renders the solid using the geometry and color specified.

• Inertia — Model only the inertial properties of a solid element. You must specify
the moments of inertia, products of inertia, and center of mass explicitly. During
simulation, Mechanics Explorer identifies the center of mass using the inertia icon

.

Inertia in a Model

To add a Solid or Inertia block to your model, connect its frame port to another frame
entity in the model. Frame entities include frame lines, nodes, and ports. The frame
entity to which you connect the block determines the position and orientation of the
inertia within the model. See “Representing Frames” on page 1-6.

The Solid and Inertia blocks each provide a reference frame port. The Solid block enables
you to create additional frames, each of which adds a new frame port to the block. You
can use any of these frames to connect a Solid block in a model.

The figure shows an example. The model shown contains two Solid blocks, labeled Link
A and Link B. The reference frame port of Link A connects directly to the World Frame
block. Its reference frame is therefore coincident with the World frame.

The reference frame port of Link B connects to the follower frame port of the Rigid
Transform block. This block applies a spatial transform between the World frame the
reference frame of the Link B block. The spatial transform translates and/or rotates the
two frames relative to each other.

 Solid Inertia

2-23

For examples showing how to position solid elements in a model, see:

• “Model Two-Hole Binary Link” on page 2-82
• “Model Pivot Mount” on page 2-88

Inertia Parameterizations

Once you have connected the Solid or Inertia blocks in a model, you must specify their
inertial parameters. These depend on the inertia parameterization that you select. The
blocks provide three optional parameterizations:

• Calculate from Geometry — Specify mass or density. The Solid block
automatically computes the remaining inertial properties based on the solid
geometry. Only the Solid block provides this parameterization.

• Point Mass — Specify the mass and ignore the remaining inertial parameters. The
inertia behaves as point mass with no rotational inertia.

• Custom — Manually specify every inertial parameter. You must obtain each
parameter through direct calculation or from an external modeling platform.

Custom Inertia

If you select the Custom Inertia parameterization, you must specify the moments
of inertia, products of inertia, and center of mass explicitly. These parameters depend

2 Rigid Bodies

2-24

closely on the reference frame used in their calculations, so you must ensure that frame
matches the one used in SimMechanics:

• Moments and products of inertia — Enter with respect to a frame parallel to the
reference port frame but with origin at the center of mass.

• Center of mass — Enter with respect to the reference port frame.

Consider the main section of the binary link in “Model Binary Link” on page 2-74.
You model this solid using a single solid block with a General Extrusion shape.
As described in the Solid block documentation, the reference port frame for a general
extrusion has its origin in the XY plane at the [0,0] cross-section coordinate.

The figure shows the solid reference port frame, labeled R. The center-of-mass
coordinates must be with respect to this frame. The moments and products of inertia
must be with respect to a parallel frame offset so that its origin coincides with the center
of mass. This frame is virtual , as it does not correspond to any frame port, line, or node
in the model. It is labeled R* in the figure.

Moments and Products of Inertia

You can extract the moments and products of inertia directly from the inertia tensor.
This tensor is symmetric: elements with reciprocal indices have the same magnitude.
That is:

• I I
xy yx

=

• I I
yz zy

=

• I I
zx xz

=

This symmetry reduces the number of unique tensor elements to six—three moments of
inertia and three products of inertia. The complete inertia tensor has the form:

I I I

I I I

I I I

xx xy zx

xy yy yz

zx yz zz

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The moments of inertia are the diagonal elements:

 Solid Inertia

2-25

I

I

I

xx

yy

zz

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

SimMechanics defines these elements as follows:

•
I y z dm

V

xx
= ()+Ú 2 2

•
I z x dm

V

yy
= ()+Ú 2 2

•
I x y dm

V

zz
= ()+Ú 2 2

The products of inertia are the unique off-diagonal elements, each of which appears in
the inertia tensor twice:

I I

I I

I I

xy zx

xy yz

zx yz

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

SimMechanics defines these elements as follows:

•
I yzdm

V

yz
= -Ú

•
I zx dm

V

zx
= -Ú

•
I xy dm

V

xy
= -Ú

2 Rigid Bodies

2-26

The inertia tensor is simplest when it is diagonal. Such a tensor provides the moments of
inertia about the principal axes of the solid or inertia element—known as the principal
moments of inertia. The products of inertia reduce to zero:

I

I

I

xx

yy

zz

0

0 0

0 0

0
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

For more information, see the Solid and Inertia block reference pages.

Complex Inertias

Bodies often comprise different materials, have complex shapes, or contain material
imperfections that alter their centers of mass and principal axes. One example is an
imbalanced automobile wheel after driving through a pothole. You can model complex
inertias such as these using two approaches:

• Use a divide-and-conquer approach. Break up the complex solid or inertia into simpler
chunks and model each using a separate Solid or Inertia block. The resulting set of
Solid and Inertia blocks constitute a compound inertia. You use a similar approach to
model complex geometries, such as the binary link geometry in “Model Binary Link”
on page 2-74.

• Manually specify the complete inertial properties using a single Solid or Inertia block
with the inertia parameterization set to Custom. You must obtain the moments
of inertia, products of inertia, and center of mass through direct calculation, from
another modeling platform, or from another external source.

For bodies with complex shapes but uniform mass distributions, you can also import
a STEP file containing the solid geometry and set the inertia parameterization to
Calculate from Geometry.

 Specify Custom Inertia

2-27

Specify Custom Inertia

In this section...

“Custom Inertia” on page 2-27
“Model Overview” on page 2-27
“Inertia Parameters” on page 2-28
“Build Model” on page 2-30
“Specify Inertia” on page 2-30
“Add Motion Sensing” on page 2-32
“Run Simulation” on page 2-33

Custom Inertia

You can specify the inertia tensor and center of mass of a solid explicitly. To do this,
in the Solid or Inertia block, you set the inertia parameterization to Custom. This
option exposes additional fields so that you can enter the moments of inertia, products of
inertia, and center of mass.

Before entering the inertia parameters, you must ensure that they are defined with
respect to the correct frame. This frame typically coincides with the reference port
frame for standard shapes such as Sphere, Brick, and Cylinder, but not for the more
advanced Revolution and General Extrusion shapes or imported shapes.

This tutorial shows how you can specify the inertial parameters of a solid explicitly,
clarifying along the way the frames that the moments of inertia, products of inertia, and
center of mass must refer to.

Model Overview

The model in this tutorial is simple. It contains a single Solid block through which you
specify the inertial parameters of your solid. This block connects to the World frame
through a Revolute Joint block, providing it one rotational degree of freedom. You
examine the effect of the inertial parameters by simulating the angular motion in the
model.

The solid that you model has a brick shape. To illustrate the challenges associated with
the Custom Inertia parameterization, the tutorial represents the brick shape as a

2 Rigid Bodies

2-28

general extrusion. The result is a brick shape with the reference port frame origin located
at the [0,0] cross–section coordinates—which in this tutorial do not coincide with the
solid center of mass.

The figure shows the cross section of the general extrusion and its coordinates. The
[0,0] coordinates, and therefore the reference port frame origin, coincide with the upper
left vertex in the cross section. Variables Lx, Ly, and Lz refer to the length, width, and
thickness of the solid, respectively. Their values are:

• Lx = 20cm

• Ly = 1 cm

• Lz = 1cm

You specify the center of mass, but not the moments or products of inertia, with respect
to the reference port frame. To specify the moments and products of inertia, you must
use a different frame—one whose axes are parallel to the reference port frame axes but
whose origin is coincident with the solid center of mass.

The figure shows the extruded solid, its reference port frame (R), and the parallel frame
with origin at the center of mass (R*). This frame does not correspond to any frame entity
in the model. It is said to be virtual.

Inertia Parameters

To fully specify the inertia of a solid, you must specify four parameters:

 Specify Custom Inertia

2-29

• Mass
• Center of mass
• Moments of inertia
• Products of inertia

The mass of the solid is the product of its density and volume. For an aluminum
solid, the density is r = 2 7 3. g

cm
. The volume is the product of the side lengths

V Lx Ly Lz= = 20
3

cm . The solid mass is therefore:

M V= =r 54 g.

Assuming the mass distribution is uniform, the center of mass must coincide with the
center of geometry, which in frame R has the coordinates:

CM
Lx Ly

=
È

ÎÍ
˘

˚̇
= []- -

2 2
0 10 0 5 0, , , . , cm.

The axes of frame R* align with the principal axes of the solid. Taken with respect to this
frame, the moments of inertia are:

•
I Lz

M
Ly

xx
gcm= +() =

12
92 2 2

•
I Lx

M
Lz

yy
g cm= +() =

12
1804 52 2 2.

•
I Ly

M
Lx

zz
gcm= +() =

12
1804 52 2 2.

The axes of frame R* are the solid principal axes. The products of inertia are therefore
zero:

• I
yz

= 0

•
I

zx
= 0

2 Rigid Bodies

2-30

• I
xy

= 0

Build Model

1 At the MATLAB command prompt, enter smnew. SimMechanics opens a new model
with some commonly used blocks. The SimMechanics library also opens up.

2 From the Joints library, drag a Revolute Joint block.
3 Connect the blocks as shown in the figure. You can remove any unused blocks.

4 In the Mechanism Configuration block, set Gravity to [0 -9.81 0]. The new
gravity vector is perpendicular to the revolute joint axis, ensuring that the solid you
modeled oscillates due to gravity when displaced from its equilibrium position.

Specify Inertia

1 In the Solid block dialog box, under Geometry, specify the following parameters.
These parameters define the shape and size of the solid.

Parameter Value Units

Shape General Extrusion

 Specify Custom Inertia

2-31

Parameter Value Units

Cross-Section [0 0; 0 -1; 20 -1;

20 0]

cm

Length 1 cm

2 Under Inertia, specify the following parameters. These are the inertia parameters
that you calculated at the beginning of the tutorial.

Parameter Value Units

Type Custom
Mass 54 g

Center of mass [10,-0.5,0] cm

Moments of Inertia [9, 1804.5, 1804.5] g*cm^2

Products of Inertia [0, 0, 0] g*cm^2

3 Update the block diagram—for example, by selecting Simulation > Update
Diagram. Mechanics Explorer opens with a static 3-D view of the model in its initial
configuration.

4 In the Mechanics Explorer menu bar, select:

• View > Layout > Four Standard Views. This option splits the visualization
window into four panes, each with a different view.

• View > Show Frames. This option exposes all the frames in the model.
• View > Show COMs. This option exposes the center of mass for each rigid body

in the model.

The figure shows the resulting view in Mechanics Explorer.

2 Rigid Bodies

2-32

5 Examine the solid reference frame and center of mass. Verify that the center of mass
appears at the geometric center of the solid and that the solid reference frame origin
coincides with the upper left corner of the solid cross section.

Add Motion Sensing

1 In the Revolute Joint block dialog box, under Sensing, select Position and click
OK. The block exposes the physical signal output port q.

2 From the Simscape Utilities library, drag a PS-Simulink Converter block. This
block enables you to convert the physical signal output from the joint block into a
Simulink signal.

3 From the Simulink Sinks library, drag a Scope block. This block enables you to plot
the joint position output as a function of time.

4 Connect the blocks as shown in the figure.

 Specify Custom Inertia

2-33

Run Simulation

Simulate the model—for example, by selecting Simulation > Run. Mechanics Explorer
plays an animation of the model. To ensure that the gravity vector aligns vertically on
your screen, in the Mechanics Explorer toolstrip, set View Convention to Y up (XY
Front).

Double-click the Scope block and examine the oscillation period of the solid. The figure
shows the resulting plot.

2 Rigid Bodies

2-34

Try changing the inertia parameterization in the Solid block to Calculate from
Geometry and simulate the model once again. Compare the plot from the second
simulation to the first. The results are identical.

 Interactively Create Solid Frames

2-35

Interactively Create Solid Frames

In this section...

“Solid Frames” on page 2-35
“Frame-Creation Interface” on page 2-36
“Model Solid Shape” on page 2-37
“Create New Frame” on page 2-38
“Specify Frame Origin” on page 2-39
“Specify Primary Axis” on page 2-41
“Specify Secondary Axis” on page 2-42
“Save New Frame” on page 2-43

Solid Frames

By default, the Solid block provides only a reference frame port, labeled R. In simple
shapes, such as bricks, cylinders, and spheres, the reference frame origin coincides with
the solid center of mass. In more complex shapes, such as extrusions and revolutions, the
reference frame can be anywhere relative to the solid.

In many applications, the reference frame of a solid is inadequate for connecting
joints and constraints or for applying forces and torques. In such cases, you can create
new frames external to the Solid block using the Rigid Transform block. This block
enables you to define the new frame by specifying translation and rotation transforms
numerically.

An alternative approach, and one that is often more intuitive, is to create new frames
directly in the Solid block dialog box using the frame-creation interface. This interface
enables you to define new frames interactively by aligning the frame origin and axes with
geometric features such as planes, lines, and points.

In this example, you create a new frame in a solid using the frame-creation interface.
The solid shape is a general extrusion with three unequal sides. This shape helps to
demonstrate the difference between the primary and secondary frame axes that you
specify in the frame creation interface.

The figure shows the solid shape, its default reference frame (R), and the new frame that
you create (ECF).

2 Rigid Bodies

2-36

Frame-Creation Interface

The frame-creation interface is accessible through the Solid block dialog box. To open the
interface, in the Frames expandable area, select the Create button . If you change
any of the block parameters, you must first update the solid visualization by selecting the

Update Visualization button .

You can define frames based on geometric features of the solid or a choice of two frames
—reference and principal inertia frames. The reference frame is the default frame of the
solid. The principal inertia frame is one whose origin coincides with the center of mass
and whose axes coincide with the principal axes of the solid.

Frames that you define by geometric features are specific to the shapes the features
belong to. If you make the frame origin coincident with the vertex of a brick, the new
frame is valid only for that particular brick shape. If you change shapes, you must edit or
delete the new frame, as the geometric features it depends on no longer exist.

The frame-creation interface has three sections for specifying the following:

• Frame origin
• Primary axis
• Secondary axis

The primary axis constrains the possible directions of the remaining two axes. These
axes must lie in the normal plane of the primary axis. If the axis or geometric feature

 Interactively Create Solid Frames

2-37

used to define the secondary axis does not lie on this plane, the secondary axis is the
projection of that axis or feature onto the normal plane.

The figure shows a top view of the three-sided extrusion you model in this tutorial. You
align the primary axis (z) with the surface normal vector nz and the secondary axis (x)
with the line vector nx. Because nx is not normal to the primary axis, the secondary axis
is the projection of nx onto the normal plane of the primary axis.

Model Solid Shape

1 From the Body Elements library, add one Solid block to a new model. The Solid block
provides its own visualization utility. You do not need to update the block diagram to
visualize the solid shape or its frames.

2 In the Solid block dialog box, specify these parameters.

Parameter Value

Geometry > Shape General Extrusion

Geometry > Cross-section [0,0;1,0;1,0.5]

3
In the visualization toolstrip, select the Update Visualization button . The
visualization pane updates with the three-sided extrusion that you specified.

4 Select the Toggle Frames button. The visualization pane shows all the frames
in the solid. At this point, the solid has a single frame—its reference frame. The
reference frame origin coincides with the [0,0] cross-section coordinate in the
midplane of the extrusion.

2 Rigid Bodies

2-38

Create New Frame

In the Frames expandable area of the Solid block dialog box, select the Create button
. The Solid block opens the frame-creation interface.

 Interactively Create Solid Frames

2-39

In the Frame Name parameter, enter ECF (short for Extrusion Corner Frame). The
frame name identifies the new frame in the Solid block visualization pane. It also
appears as the frame port label on the Solid block.

Specify Frame Origin

Under Frame Origin, select At Center of Mass. The visualization pane updates
with the new frame at the center of mass of the solid. This frame has the default frame
orientation, that of the reference frame. The label ECF identifies the new frame.

2 Rigid Bodies

2-40

Experiment with other frame origin locations. Define the origin location using one of the
extrusion vertices.

1 Under Frame Origin, select Based on Geometric Feature. This option enables
you to select a point or the center of a plane or line as the frame origin.

2 In the visualization pane, select the vertex shown in the figure. The vertex is in the
top plane of the extrusion. Ensure the view point is set to Isometric. In the Frame
Origin area, ensure the vertex is named Location of top point 3.

3 Under Frame Origin, select the Use Selected Feature button. The visualization
pane updates with the frame origin at the selected corner.

 Interactively Create Solid Frames

2-41

Specify Primary Axis

The primary axis constrains the remaining two axes to lie on its normal plane. In this
sense, the primary axis plays the dominant role in setting the orientation of the frame.
Make the primary axis normal to the surface that contains the cross-section hypotenuse:

1 In the Frame Axes area under Primary Axis, select Based on Geometric
Feature. The direction you specify in the next steps is that of the default primary
axis, +Z.

2 In the visualization pane, rotate the solid and select the surface shown. The
visualization pane highlights the surface and shows its normal vector. In the Frame
Axes area under Primary Axis, ensure the surface is named Surface normal of
side surface 3.

3 In the Frame Axes area under Primary Axis, select the Use Selected Feature
button. The visualization pane updates with the z axis of the ECF frame, shown in
dark blue, parallel to the normal vector of the selected surface.

2 Rigid Bodies

2-42

Specify Secondary Axis

The secondary axis completes the definition of the new frame. In conjunction with the
primary axis, the secondary axis fully constrains the direction of the third axis. The
secondary axis is itself constrained to lie on the normal plane of the primary axis. To see
the effects of this constraint, define the secondary axis based on a line not normal to the
primary axis:

1 In the Frame Axes area, set the Secondary Axis parameter to -X. The direction
you specify in the following steps is that of the -X axis.

2 In the Frame Axes area, under Secondary Axis, select Based on Geometric
Feature.

3 In the visualization pane, rotate the solid and select the line shown. In the Frame
Axes area, under Secondary Axis, ensure this line is named Curve direction
of top curve 1.

 Interactively Create Solid Frames

2-43

4 Select the Use Selected Feature button. The visualization pane updates wit the x
axis of the frame, shown in red, partially aligned with the selected line.

The two are not completely aligned as the selected line does not lie on the normal
plane of the primary axis. The secondary axis is therefore the projection of the
selected line onto the normal plane of the primary axis.

Save New Frame

To save the frame you defined and commit it to the model:

1 Select the Save button. The visualization pane shows the solid with the final version
of the frame you defined.

2 Rigid Bodies

2-44

2 In the main interface of the Solid block dialog box, select OK or Apply. The Solid
block commits the new frame to the model and exposes a new frame port labeled
with the frame name you specified.

 Solid Color

2-45

Solid Color

In this section...

“Basic Graphic Parameters” on page 2-46
“Advanced Graphic Parameters” on page 2-47

To make the most of the visualization capability of Mechanics Explorer, the Solid block
provides two parameterizations that you can use to specify the graphic appearance of
a solid: Simple and Advanced. The two parameterizations accept material color and
opacity parameters as input. Light source parameters are fixed for all models. The table
provides a comparison of the input parameters present in each graphic parameterization.

Graphic Parameter Simple Advanced

Diffuse Color ✓ ✓
Ambient Color ✗ ✓
Specular Color ✗ ✓
Emissive Color ✗ ✓
Opacity ✓ ✓
Shininess ✗ ✓

As an example, the figure shows two identical elliptical extrusions, one based on Simple
and the other on Advanced graphic parameterizations. In both cases, the extrusion is
completely opaque with a gray diffuse color. The advanced version adds to the solid a set
of blue highlights, through the use of specular color, and a red ambient hue, through the
use of ambient color.

Color Parameter Simple Advanced

Diffuse Color [0.8 0.8 0.8] [0.8 0.8 0.8 1.0]

Ambient Color — [0.1 0.05 0.05 1.0]

Specular Color — [0 0 1.0 1.0]

2 Rigid Bodies

2-46

The material colors — diffuse, ambient, specular, and emissive — form the core of the
graphical representation of a solid in SimMechanics. You can specify the material colors
in terms of RGB or RGBA color vectors.

Basic Graphic Parameters

Both Simple and Advanced graphic parameterizations require you to specify the diffuse
color and opacity of the solid. Together, these two parameters represent the graphical
core of a SimMechanics solid. The way in which you specify the parameters differs
slightly between the two parameterizations, but the meaning of each parameter remains
the same.

Diffuse Color
Apparent color of a rough solid surface exposed to direct white light. Diffuse light
scatters equally in all directions according to Lambert’s law, causing the intensity
and color of the scattered light to appear the same from all angles. The diffuse color
normally provides the dominant contribution to the color of a solid surface. In most
cases, you can think of the diffuse color as the “true color” of a solid surface.

Parameterization Parameter Name Used Specification

Simple Color [R G B] vector
Advanced Diffuse Color [R G B A] vector

The figure shows the effect of varying the diffuse color of a solid. The array of spheres
have identical graphical properties, with the exception of Diffuse Color. The RGBA

 Solid Color

2-47

color vector of the diffuse color progresses from [1 1 1], at the left corner, to [0.85 0.45
0], at the right corner. A gray ambient color gives the solid a darker appearance.

Opacity
The opacity is the degree to which a solid blocks light from passing through. A
completely opaque solid blocks all light penetration through the solid. The opposite
of a completely opaque solid is a transparent solid, which allows all light to pass
through. You can reduce the opacity of a solid in order to improve the visibility of
other solids otherwise blocked from view.

Parameterization Parameter Name Used Specification

Simple Opacity Scalar number (0–1)
Advanced A element of Diffuse

Color [R G B A] vector
Scalar number (0–1)

The figure shows the effect of varying the opacity of a solid. The array of spheres
have identical graphical properties, with the exception of Opacity. The opacity value
progresses from 0.1, at the left corner, to 1, at the right corner. An opacity value
of 0 represents a completely transparent, or invisible, solid. An opacity value of 1
represents a completely opaque solid.

Advanced Graphic Parameters

In addition to the diffuse color and opacity, the Advanced parameterization provides
a set of colors that enhance the 3–D graphical appearance of the solid. The additional
colors include specular, ambient, and emissive colors, each of which includes an opacity
(A) element in the [R G B A] color vector. You can omit the fourth element in the RGBA
vector, in which case the color uses a maximum opacity value of 1.

2 Rigid Bodies

2-48

Specular Color
The specular color is the apparent color of the glossy highlights arising from a solid
surface exposed to direct light. The size of the specular highlights depends on the
value of the Shininess parameter. The intensity of the specular color is not uniform
in space, and has a strong dependence on the viewing angle. Changing the specular
color changes only the color of the specular highlights. For most applications, the [R
G B A] vector [0.5 0.5 0.5 1] works well.

The figure shows the effect of varying the specular color of a solid. The array of
spheres have identical graphical properties, with the exception of Specular Color.
The RGBA color vector of the specular color progresses from [1 1 1 1], at the left
corner, to [1 0 0 1], at the right corner. A gray ambient color gives the solid a darker
appearance.

Ambient Color
The ambient color is the apparent color of a solid surface exposed only to indirect
light. Changing the ambient color changes the overall color of the entire solid surface.
For most applications, the RGBA vector [0.15 0.15 0.15 1] works well.

The figure shows the effect of varying the ambient color of a solid. The array of
spheres have identical graphical properties, with the exception of the Ambient
Color. The RGBA color vector of the ambient color progresses from [1 1 1 1], at the
left corner, to [1 0 0 1], at the right corner. A gray ambient color gives the solid in the
left corner a darker appearance.

Emissive Color
The emissive color is the apparent color of light emitted directly by the solid surface.
Examples of solids with a nonzero emissive color include glowing hot metal, light
displays, and the Sun. For most applications, the RGBA vector [0 0 0 1] works well.

 Solid Color

2-49

The figure shows the effect of varying the emissive color of a solid. The array of
spheres have identical graphical properties, with the exception of the Emissive
Color. The RGBA color vector of the emissive color progresses from [1 1 1 1], at the
left corner, to [1 0 0 1], at the right corner. A gray ambient color gives the solid in
the left corner a darker appearance. The glowing appearance of the emissive color
differentiates the emissive color from ambient and diffuse colors.

Shininess
The shininess is a parameter that encodes the size and rate of decay of specular
highlights on a solid surface. A small shininess value corresponds to a large specular
highlight with gradual falloff in highlight intensity. On the other hand, a large
shininess value corresponds to a small specular highlight with sharp falloff in
highlight intensity.

The figure shows the effect of varying the shininess of a solid. The array of spheres
have identical graphical properties, with the exception of Shininess. The shininess
value progresses from 5, at the left corner, to 25, at the right corner. As the shininess
value increases, the area of the specular highlight decreases, while the falloff rate in
highlight intensity increases.

2 Rigid Bodies

2-50

Model Cone

In this section...

“Model Overview” on page 2-50
“Modeling Approach” on page 2-50
“Build Solid Model” on page 2-51
“Define Solid Properties” on page 2-52
“Visualize Solid Model” on page 2-53

Model Overview

You can model solids of revolution using the SimMechanics Revolution shape.
Examples of solids of revolution include cone and circular dome shapes. In this example,
you model a simple solid with cone shape using the Revolution shape. For an example
that shows you how to model a circular dome solid, see “Model Dome” on page 2-56.

Modeling Approach

To represent the cone geometry, first identify its cross-section shape. This is the 2-
D area that SimMechanics revolves to obtain the 3-D cone. Then, specify the cross-
section coordinates in the Solid block dialog box. These coordinates must satisfy certain
restrictions. See “Revolution and General Extrusion Shapes” on page 2-17.

The cone in this example has a trapezoidal cross-section. The figure shows this cross-
section.

 Model Cone

2-51

The [0 0] cross-section coordinate identifies the reference frame origin for this solid.
To place the solid reference frame at the cone tip, you by specify the coordinates so
that the [0 0] coordinate coincides with the tip. By parameterizing the cross-section
coordinates in terms of the relevant cone dimensions, you can quickly change the cone
dimensions without having to reenter the cross-section coordinates. The figure shows the
parameterized cross-section coordinates points.

Build Solid Model

1 At the MATLAB command prompt, enter smnew. A new SimMechanics model opens
with some commonly used blocks. Delete all but the Solid block.

2 In the Solid block dialog box, specify the following parameters. You later initialize
the different MATLAB variables in a subsystem mask.

Parameter Select or Enter

Geometry > Shape Revolution.
Geometry > Cross-Section CS, units of cm

2 Rigid Bodies

2-52

Parameter Select or Enter

Inertia > Density Rho

Graphic > Visual Properties > Color RGB

3 Select the Solid block and generate a new subsystem, e.g., by pressing Ctrl+G.

Define Solid Properties

1 Select the Subsystem block and create a subsystem mask, e.g., by pressing Ctrl+M.
2

In the Parameters & Dialog tab of the Mask Editor, drag five Edit boxes into
the Parameters group and specify these parameters.

Prompt Name

Base Radius R

Cone Height H

Wall Thickness T

Density Rho

Color RGB

3 In the Initialization tab of the Mask Editor, define the cross-section coordinates
and assign them to the MATLAB variable CS:

Alpha = atan(R/H);

CS = [0 0; R H; R-T/cos(Alpha) H; 0 T/sin(Alpha)];

 Model Cone

2-53

4 In the Subsystem block dialog box, specify the numerical values of the solid
properties. The table shows some values that you can enter.

Parameter Enter

Base Radius 1

Cone Height 2

Wall Thickness 0.1

Density 2700

Color [0.85 0.45 0]

Visualize Solid Model

You can now visualize the cone solid. To do this, look under the Subsystem mask—e.g.,
by selecting the Subsystem block and pressing Ctrl+U—and open the Solid block dialog
box. The solid visualization pane shows the solid that you modeled.

2 Rigid Bodies

2-54

Parameterizing the solid dimensions in terms of MATLAB variables enables you to
modify the solid shape without having to redefine its cross-section coordinates. You can
change the solid size and proportions simply by changing their values in the Subsystem
block dialog box. The figure shows some examples.

 Model Cone

2-55

2 Rigid Bodies

2-56

Model Dome

In this section...

“Model Overview” on page 2-56
“Modeling Approach” on page 2-56
“Build Solid Model” on page 2-57
“Define Solid Properties” on page 2-58
“Visualize Solid Model” on page 2-59

Model Overview

You can model a solid of revolution with a round cross-section. One example is the
circular dome. In this example, you specify the cross-section coordinates of a circular
dome using the MATLAB cos and sin functions. For an example that shows you how to
model a cone-shaped solid, see “Model Cone” on page 2-50.

Modeling Approach

To represent the dome geometry, first identify its cross-section shape. This is the 2-D
shape that SimMechanics revolves to obtain the 3-D dome. You can then specify the
cross-section coordinates in the Solid block dialog box. These coordinates must satisfy
certain restrictions. See “Revolution and General Extrusion Shapes” on page 2-17.

The dome has a quarter-circle cross-sectional shape. The figure shows this shape.

 Model Dome

2-57

The [0 0] cross-section coordinate identifies the reference frame origin for this solid. To
place the solid reference frame at the dome base center, you specify the coordinates so
that the [0 0] coordinate coincides with the base center. By parameterizing the cross-
section coordinates in terms of the relevant dome dimensions, you can quickly change
the dome dimensions without having to reenter the cross-section coordinates. The figure
shows the parameterized cross-section coordinate points.

To define the dome cross-section, first define two angle arrays—one in counterclockwise
order, running from 0–90°; the other in a clockwise order running from 90–0°. You can
then use the first array to define the outer cross-section coordinates, and the second
array to define the inner cross-section coordinates. You do that using the MATLAB cos
and sin functions.

Build Solid Model

1 At the MATLAB command prompt, enter smnew. A new SimMechanics model opens
with some commonly used blocks. Delete all but the Solid block.

2 In the Solid block dialog box, specify the following parameters. You later initialize
the different MATLAB variables in a subsystem mask.

Parameter Select or Enter

Geometry > Shape Revolution

Geometry > Cross-Section CS, units of cm
Inertia > Density Rho

2 Rigid Bodies

2-58

Parameter Select or Enter

Graphic > Visual Properties > Color RGB

3 Select the Solid block and generate a subsystem, e.g., by pressing Ctrl+G.

Define Solid Properties

1 Select the Subsystem block and create a subsystem mask, e.g., by pressing Ctrl+M.
2

In the Parameters & Dialog tab of the Mask Editor, drag four Edit boxes into
the Parameters group and specify these parameters.

Prompt Name

Base Radius R

Wall Thickness T

Density Rho

Color RGB

3 In the Initialization tab of the Mask Editor, define the cross-section coordinates
and assign them to the MATLAB variable CS:

% Circular dome outer coordinates:

Alpha = (0:0.01:pi/2)';

OuterCS = R*[cos(Alpha), sin(Alpha)];

% Circular dome inner coordinates:

Beta = (pi/2:-0.01:0)';

 Model Dome

2-59

InnerCS = (R-T)*[cos(Beta), sin(Beta)];

CS = [OuterCS; InnerCS];

4 In the Subsystem block dialog box, specify the numerical values of the solid
properties. The table shows some values that you can enter.

Parameter Enter

Base Radius 1

Wall Thickness 0.1

Density 2700

Color [0.85 0.45 0]

Visualize Solid Model

You can now visualize the dome solid. To do this, look under the Subsystem mask—e.g.,
by selecting the Subsystem block and pressing Ctrl+U—and open the Solid block dialog
box. The solid visualization pane shows the solid that you modeled.

2 Rigid Bodies

2-60

Parameterizing the solid dimensions in terms of MATLAB variables enables you to
modify the solid shape without having to redefine its cross-section coordinates. You can
change the solid size and proportions simply by changing their values in the Subsystem
block dialog box. The figure shows some examples.

 Model Dome

2-61

2 Rigid Bodies

2-62

Model I-Beam

In this section...

“Model Overview” on page 2-62
“Modeling Approach” on page 2-62
“Build Solid Model” on page 2-63
“Define Solid Properties” on page 2-64
“Visualize Solid Model” on page 2-65

Model Overview

You can model an extrusion using the SimMechanics shape General Extrusion.
Examples of extrusions include the I-beam and box-beam shapes. In this example, you
model a simple solid with I-beam shape using the General Extrusion shape. For
an example that shows you how to model a box beam, see “Model Box Beam” on page
2-68.

Modeling Approach

To represent the I-beam geometry, first identify its cross-section. This is the 2-D area
that SimMechanics extrudes to obtain the 3-D I-beam. You can then specify the cross-
section coordinates in the Solid block dialog box. The figure shows the I-beam cross-
section that you specify in this example.

 Model I-Beam

2-63

The [0 0] coordinate identifies the solid reference frame origin. To place the reference
frame at the center of the I-beam, specify the coordinates so that the [0 0] coordinate
is at the cross-section center. Because the I-beam cross-section is symmetric about the
horizontal and vertical axes, you need only define the coordinates for one cross-section
half—e.g, the right half. You can then define the left half coordinates in terms of the
right half coordinates.

By parameterizing the cross-section coordinates in terms of relevant I-beam dimensions,
you can quickly change the I-beam dimensions without having to reenter the cross-
section coordinates. The figure shows the cross-section dimensions and coordinates that
you must specify to represent the I-beam.

Using the cross-section points that the figure shows, you define the coordinate matrix as:

HalfCS = [A; B; C; D; E; F];

CS = [HalfCS; -HalfCS];

Build Solid Model

1 At the MATLAB command prompt, enter smnew. A new SimMechanics model opens
with some commonly used blocks. Delete all but the Solid block.

2 Rigid Bodies

2-64

2 In the Solid block dialog box, specify the following parameters. You later initialize
the different MATLAB variables in a subsystem mask.

Parameter Select or Enter

Geometry > Shape General Extrusion

Geometry > Cross-Section CS, units of cm
Geometry > Length L, units of cm
Inertia > Density Rho

Graphic > Visual Properties > Color RGB

3 Select the Solid block and generate a new subsystem, e.g., by pressing Ctrl+G.

Define Solid Properties

1 Select the Subsystem block and create a subsystem mask, e.g., by pressing Ctrl+M.
2

In the Parameters & Dialog tab of the Mask Editor, drag six Edit boxes into
the Parameters group and specify these parameters.

Prompt Name

Length L

Height H

Width W

Thickness T

 Model I-Beam

2-65

Prompt Name

Density Rho

Color RGB

3 In the Initialization tab of the Mask Editor, define the cross-section coordinates
and assign them to MATLAB variable CS:

D = H/2-T;

HalfCS = [W/2, -H/2; W/2, -D; T/2, -D;...

T/2, D; W/2, D; W/2, H/2];

CS = [HalfCS; -HalfCS];

4 In the Subsystem block dialog box, specify the numerical values of the solid
properties. The table shows some values that you can enter.

Parameter Enter

Length 10

Height 4

Width 2

Thickness 0.2

Density 2700

Color [0.85 0.45 0]

Visualize Solid Model

You can now visualize the I-beam solid. To do this, look under the Subsystem mask—e.g.,
by selecting the Subsystem block and pressing Ctrl+U—and open the Solid block dialog
box. The solid visualization pane shows the solid that you modeled.

2 Rigid Bodies

2-66

Parameterizing the solid dimensions in terms of MATLAB variables enables you to
modify the solid shape without having to redefine its cross-section coordinates. You can
change the solid size and proportions simply by changing their values in the Subsystem
block dialog box. The figure shows some examples.

 Model I-Beam

2-67

2 Rigid Bodies

2-68

Model Box Beam

In this section...

“Model Overview” on page 2-68
“Modeling Approach” on page 2-68
“Build Solid Model” on page 2-69
“Define Solid Properties” on page 2-70
“Visualize Solid Model” on page 2-71

Model Overview

You can model an extrusion with a hole. One example is the box beam. Specifying
hollow cross-sections must satisfy the cross-section guidelines. See “Revolution and
General Extrusion Shapes” on page 2-17. In this example, you specify the cross-section
coordinates of a box beam. For an example that shows you how to model an I-beam
extrusion, see “Model I-Beam” on page 2-62.

Modeling Approach

To represent the box beam geometry, first identify its cross-section. This is the 2-D area
that you sweep along an axis to obtain the 3-D box beam. You can then specify the cross-
section coordinates using the Solid block. The figure shows the box beam cross-section
that you specify in this example.

 Model Box Beam

2-69

The [0 0] coordinate identifies the solid reference frame origin. To place the reference
frame at the center of the box beam, specify the coordinates so that the [0 0] coordinate
is at the cross-section center. By parameterizing the cross-section coordinates in terms
of relevant box beam dimensions, you can later change the box beam dimensions without
having to reenter the cross-section coordinates. The figure shows the cross-section
dimensions and coordinates that you must specify to represent the box beam.

Using the cross-section points that the figure shows, you define the coordinate matrix as:

OuterCS = [A, B, C, D, E];

InnerCS = [F, G, H, I, J];

CS = [OuterCS; InnerCS];

For more information about specifying the hollow cross-section coordinates, see “Hollow
Cross Sections” on page 2-18.

Build Solid Model

1 At the MATLAB command prompt, enter smnew. A new SimMechanics model opens
with some commonly used blocks. Delete all but the Solid block.

2 Rigid Bodies

2-70

2 In the Solid block dialog box, specify the following parameters. You later initialize
the different MATLAB variables in a subsystem mask.

Parameter Select or Enter

Geometry > Shape General Extrusion

Geometry > Cross-Section CS, units of cm
Geometry > Length L, units of cm
Inertia > Density Rho

Graphic > Visual Properties > Color RGB

3 Select the Solid block and generate a new subsystem, e.g., by pressing Ctrl+G.

Define Solid Properties

In the subsystem mask, initialize the solid parameters. Then, in the subsystem dialog
box, specify their values.

1 Select the Subsystem block and create a subsystem mask, e.g., by pressing Ctrl+M.
2

In the Parameters & Dialog tab of the Mask Editor, drag six Edit boxes into
the Parameters group and specify these parameters.

Prompt Name

Length L

Height H

 Model Box Beam

2-71

Prompt Name

Width W

Thickness T

Density Rho

Color RGB

3 In the Initialization tab of the Mask Editor, define the cross-section coordinates
and assign them to MATLAB variable CS:

D1 = W/2-T;

D2 = H/2-T;

OuterCS = [-W/2,-H/2; W/2,-H/2; W/2,H/2; ...

-W/2,H/2; -W/2,-H/2];

InnerCS = [-D1,-D2; -D1,D2; D1,D2; D1 -D2; -D1,-D2];

CS = [OuterCS; InnerCS];

4 In the Subsystem block dialog box, specify the numerical values of the solid
properties. The table shows some values that you can enter.

Parameter Enter

Length 10

Height 4

Width 2

Thickness 0.2

Density 2700

Color [0.85 0.45 0]

Visualize Solid Model

You can now visualize the box-beam solid. To do this, look under the Subsystem mask
—e.g., by selecting the Subsystem block and pressing Ctrl+U—and open the Solid block
dialog box. The solid visualization pane shows the solid that you modeled.

2 Rigid Bodies

2-72

Parameterizing the solid dimensions in terms of MATLAB variables enables you to
modify the solid shape without having to redefine its cross-section coordinates. You can
change the solid size and proportions simply by changing their values in the Subsystem
block dialog box. The figure shows some examples.

 Model Box Beam

2-73

2 Rigid Bodies

2-74

Model Binary Link

In this section...

“Model Overview” on page 2-74
“Modeling Approach” on page 2-74
“Solid Properties” on page 2-76
“Build Model” on page 2-77
“Update Subsystem” on page 2-79
“Visualize Model” on page 2-80
“Open Reference Model” on page 2-81

Model Overview

In example “Represent Binary Link Frame Tree” on page 1-33, you modeled the frame
tree of a binary link rigid body. In this example, you add to that frame tree the solid
properties of the binary link: geometry, inertia, and color.

Modeling Approach

To model a binary link, you must use multiple Solid blocks. Each Solid block represents
an elementary portion of the binary link. Rigid bodies that you model using multiple

 Model Binary Link

2-75

Solid blocks are called compound rigid bodies. The compound rigid body technique
reduces a single complex task (modeling the entire binary link shape) into several simple
tasks (modeling the Main, Hole, and Peg sections of the binary link).

To use the compound rigid body technique:

1 Divide shape into simple sections.

Dividing the shape simplifies the modeling task in more complex cases. You can
divide the binary link into three simple sections: Main, Peg, and Hole, shown in the
figure.

2 Represent each section using a Solid block.

Each section should be simple enough to model using a single Solid block. In the
binary link example, you can represent sections Main and Hole using SimMechanics
shape General Extrusion, and section peg with SimMechanics shape Cylinder.

3 Rigidly connect Solid blocks to rigid body frame tree.

Rigid connections ensure the different solid sections move as a single rigid body.
Connect the Solid blocks to the binary link frame tree to apply the correct spatial
relationships between the solid sections.

2 Rigid Bodies

2-76

Solid Properties

You model the binary link as a compound rigid body subsystem. In this subsystem, three
Solid blocks represent the basic solid sections of the binary link. Each solid section has
a shape and a local reference frame that you connect to the binary link frame tree. Two
SimMechanics shapes are used: General Extrusion and Cylinder.

You can promote subsystem reusability by parameterizing solid properties in terms of
MATLAB variables. In this example, you initialize the variables in a subsystem mask.
You can then specify their numerical values in the subsystem dialog box. The table
provides the dimensions needed to model the binary link solid sections. In the previous
example, “Represent Binary Link Frame Tree” on page 1-33, you used the first three
dimensions to specify the spatial relationships between the different binary link frames.

Dimension MATLAB Variable

Length L

Width W

Thickness T

Peg Radius R

 Model Binary Link

2-77

SimMechanics shape General Extrusion requires you to specify a set of cross-section
coordinates. This is a MATLAB matrix with all the [X Y] coordinate pairs needed to draw
the cross-section. Straight line segments connect adjacent coordinate pairs.

Coordinate matrices must obey a set of rules. The most important rule is that the solid
region must lie to the left of the line segment connecting adjacent coordinate pairs. For
more information, see “Revolution and General Extrusion Shapes” on page 2-17. The
figure shows the coordinates required to specify the cross-section shapes of solid sections
Main and Hole.

Build Model

1 At the MATLAB command prompt, enter smdoc_binary_link_frames. A
SimMechanics model opens with the frame tree you modeled in the “Represent
Binary Link Frame Tree” on page 1-33 tutorial.

2 Rigid Bodies

2-78

2 Right click Binary Link and select Mask > Look Under Mask.

From the SimMechanics Body Elements library, drag three Solid blocks into the
model.

3 Connect and name the blocks as shown in the figure.

 Model Binary Link

2-79

4 In the Solid block dialog boxes, specify these parameters.

Parameter Hole Main Peg

Geometry >
Shape

Select General
Extrusion.

Select General
Extrusion.

Select Cylinder.

Geometry >
Cross-section

Enter HoleCS.
Select units of cm.

Enter MainCS.
Select units of cm.

—

Geometry >
Radius

— — Enter R. Select
units of cm.

Geometry >
Length

Enter T. Select
units of cm.

Enter T. Select
units of cm.

Enter 2*T. Select
units of cm.

Geometry >
Density

Enter Rho. Enter Rho. Enter Rho.

Graphic > Color Enter LinkRGB. Enter LinkRGB. Enter PegRGB.

Update Subsystem

In the subsystem mask, initialize the MATLAB variables you entered for the block
parameters.

1 Select the subsystem block and press Ctrl+M to create a subsystem mask.
2

In the Parameters & Dialog tab of the Mask Editor, drag four edit boxes into
the Parameters group and specify these parameters. Then, click OK.

Prompt Name

Peg Radius R

Mass Density Rho

Link Color [R G B] LinkRGB

Peg Color [R G B] PegRGB

Note: The subsystem mask should contain three other parameters: L, W, and T. You
specify those parameters in “Represent Binary Link Frame Tree” on page 1-33.

2 Rigid Bodies

2-80

3 In the Initialization tab of the Mask Editor, define the extrusion cross-sections and
press OK:

% Cross-section of Main:

Alpha = (-pi/2:0.01:pi/2)';

Beta = (pi/2:-0.01:-pi/2)';

PegCS = [L/2+W/2*cos(Alpha)...

W/2*sin(Alpha)];

HoleCS = [-L/2 W/2; -L/2 + R*cos(Beta)...

R*sin(Beta); -L/2 -W/2];

MainCS = [PegCS; HoleCS];

% Cross-section of Hole:

Alpha = (pi/2:0.01:3*pi/2)';

Beta = (3*pi/2:-0.01:pi/2)';

HoleCS = [W/2*cos(Alpha) W/2*sin(Alpha);

R*cos(Beta) R*sin(Beta)];

4 In the binary_link subsystem block dialog box, specify these parameters.

Parameter Value

Length 30

Width 2

Thickness 0.8

Peg Radius 0.4

Mass Density 2700

Link Color [R G B] [0.25 0.4 0.7]

Peg Color [R G B] [1 0.6 0.25]

Visualize Model

Update the block diagram. You can do this by pressing Ctrl+D. Mechanics Explorer
opens with a static view of the binary link. To obtain the view shown in the figure, in the

Mechanics Explorer toolstrip select the isometric view button .

 Model Binary Link

2-81

Open Reference Model

To view a completed version of the binary link model, at the MATLAB command prompt
enter smdoc_binary_link_a.

Related Examples
• “Model Two-Hole Binary Link” on page 2-82
• “Model Pivot Mount” on page 2-88

2 Rigid Bodies

2-82

Model Two-Hole Binary Link

In this section...

“Model Overview” on page 2-82
“Build Model” on page 2-82
“Generate Subsystem” on page 2-84
“Visualize Model” on page 2-86
“Open Reference Model” on page 2-87

Model Overview

In this example, you model a two-hole binary link as a rigid body. Three Solid blocks
represent the main body and hole sections of the link. Two Rigid Transform blocks define
the spatial relationships between the three solids. This example is a variation of “Model
Binary Link” on page 2-74.

Build Model

1 Start a new model.
2 Drag the following blocks to the model.

Library Block Quantity

Simscape > Utilities Solver Configuration 1

 Model Two-Hole Binary Link

2-83

Library Block Quantity

SimMechanics > Second
Generation > Frames
and Transforms

Rigid Transform 2

SimMechanics > Second
Generation > Body
Elements

Solid 3

3 Connect and name the blocks as shown in the figure.

Be sure to flip the Rigid Transform block. Its B frame port must face the Main Solid
block. Also include the broken line extending from the Hole B block (right click the
existing connection line and drag).

4 In the solid block dialog boxes, specify these parameters.

Parameter Hole A Main Hole B

Geometry >
Shape

Select General
Extrusion.

Select General
Extrusion.

Select General
Extrusion.

Geometry >
Cross-section

Enter HoleACS.
Select units of cm.

Enter MainCS.
Select units of cm.

Enter HoleBCS.
Select units of cm.

Geometry >
Length

Enter T. Select
units of cm.

Enter T. Select
units of cm.

Enter T. Select
units of cm.

Inertia > Density Enter Rho. Enter Rho. Enter Rho.

2 Rigid Bodies

2-84

Parameter Hole A Main Hole B

Graphic > Visual
Properties >
Color

Enter LinkRGB. Enter LinkRGB. Enter LinkRGB.

5 In the rigid transform block dialog boxes, specify these parameters.

Parameter Rigid Transform Rigid Transform1

Translation > Method Select Standard Axis. Select Standard Axis.
Translation > Axis Select +X. Select +X.
Translation > Offset Enter -L/2. Select units of

cm.
Enter +L/2. Select units of
cm.

Generate Subsystem

Enclose the binary link blocks in a Subsystem block, define the general extrusion
coordinates, and specify the relevant parameter values:

1 Select all blocks excluding Solver Configuration and press Ctrl+G.. Simulink
encloses the selected blocks in a new subsystem block. Rename the subsystem block
as shown in the figure.

2 Select the subsystem block and press Ctrl+M. Simulink adds a parameter mask to
the subsystem block.

 Model Two-Hole Binary Link

2-85

3
In the Parameters & Dialog tab of the Mask Editor, drag six edit boxes into
the Parameters group and specify the following parameters.

Prompt Name

Length L

Width W

Thickness T

Peg Hole Radius R

Mass Density Rho

Link Color LinkRGB

4 In the Initialization tab of the Mask Editor, define the extrusion cross sections and
click OK:

% Cross-section of Main:

Alpha = (pi/2:-0.01:-pi/2)';

Beta = (3*pi/2:-0.01:pi/2)';

EndACS = [-L/2 W/2; -L/2+R*cos(Alpha)...

R*sin(Alpha); -L/2 -W/2];

EndBCS = [L/2 -W/2; L/2+R*cos(Beta)...

R*sin(Beta); L/2 W/2];

MainCS = [EndACS; EndBCS];

% Cross-section of HoleA:

Alpha = (pi/2:0.01:3*pi/2)';

Beta = (3*pi/2:-0.01:pi/2)';

HoleACS = [W/2*cos(Alpha) W/2*sin(Alpha);...

R*cos(Beta) R*sin(Beta)];

% Cross-section of HoleB:

Alpha = (-pi/2:0.01:pi/2)';

Beta = (pi/2:-0.01:-pi/2)';

HoleBCS = [W/2*cos(Alpha) W/2*sin(Alpha);...

R*cos(Beta) R*sin(Beta)];

5 In the dialog box of the Binary Link B subsystem block, specify these parameters.

2 Rigid Bodies

2-86

Parameter Value

Length 30

Width 2

Thickness 0.8

Peg Hole Radius 0.4

Mass Density 2700

Link Color [R G B] [0.25 0.4 0.7]

Visualize Model

Update the block diagram. You can do this by pressing Ctrl+D. Mechanics Explorer
opens with a static display of the binary link rigid body. To obtain the view shown in the

figure, in the Mechanics Explorer toolstrip select the isometric view button .

You can open a copy of the resulting model. At the MATLAB command line, enter
smdoc_binary_link_b.

 Model Two-Hole Binary Link

2-87

Open Reference Model

To open a completed version of the two-hole binary link model, at the MATLAB command
prompt, enter smdoc_binary_link_b.

Related Examples
• “Model Binary Link” on page 2-74
• “Model Pivot Mount” on page 2-88
• “Model Four Bar” on page 3-19

2 Rigid Bodies

2-88

Model Pivot Mount

In this section...

“Model Overview” on page 2-88
“Modeling Approach” on page 2-88
“Build Model” on page 2-90
“Generate Subsystem” on page 2-92
“Visualize Model” on page 2-93
“Open Reference Model” on page 2-94

Model Overview

In this example, you model a simple pivot mount. This mount is a compound rigid body
with a hexagonal shape and a protruding cylindrical peg. You represent the hexagonal
shape using solid shape Regular Extrusion. You then offset the protruding peg from
the hexagonal shape using a Rigid Transform block. In later examples, you use this
mount to support mechanical linkages like the double pendulum and the four bar system.

Modeling Approach

To model the pivot mount, you use two Solid blocks. Because the pivot mount has a
hexagonal shape, you can model it using the Regular Extrusion shape. To represent
the cylindrical peg, you use the Cylinder shape.

 Model Pivot Mount

2-89

Each shape has a reference frame with origin at the geometry center. To offset the
cylindrical peg with respect to the hexagonal mount, you apply a rigid transform between
the two reference frames. You do this using the Rigid Transform block.

The Z axes of the two reference frames align with the cylindrical and extrusion axes of
the peg and mount, respectively. Assuming the two solids both have thickness T, the
rigid transform between the two reference frames is a translation T along the common Z
axis.

2 Rigid Bodies

2-90

In later examples, you connect the pivot mount to a binary link using a revolute joint.
One example is a double pendulum that moves due to gravity. In this example, it helps
to rotate the Z axis of the mount so that it is orthogonal to the world frame Z axis. This
task, which involves a Rigid Transform block, makes the pivot rotation axis orthogonal to
the gravity vector, [0 0 -9.81] m/s^2.

Build Model

1 Drag these blocks into a new model.

Block Library Quantity

Solid SimMechanics > Second
Generation > Body
Elements

2

Rigid Transform SimMechanics > Second
Generation > Frames
and Transforms

2

Solver Configuration Simscape > Utilities 1

2 Connect and name the blocks as shown in the figure.

Note: Include the disconnected frame line. This line becomes important when you
generate a subsystem for the pivot mount. To add this line, right-click on the solid
frame line and drag to the right.

 Model Pivot Mount

2-91

3 In the Hexagon block dialog box, specify these parameters.

Parameter Value

Geometry > Shape Select Regular Extrusion.
Geometry > Number of Sides Enter 6.
Geometry > Outer Radius Enter HexagonR. Select units of cm.
Geometry > Length Enter T. Select units of cm.
Inertia > Density Enter Rho.
Graphic > Color Enter HexagonRGB.

4 In the Peg block dialog box, specify these parameters.

Parameter Value

Geometry > Shape Select Cylinder
Geometry > Radius Enter PegR. Select units of cm.
Geometry > Length Enter 2*T.
Inertia > Density Enter Rho.
Graphic > Color Enter PegRGB.

5 In the To Peg block dialog box, specify these parameters.

2 Rigid Bodies

2-92

Parameter Value

Translation > Method Select Standard Axis.
Translation > Axis Select +Z.
Translation > Offset Enter 3/2*T. Select units of cm.

6 In the To World block dialog box, specify these parameters.

Parameter Value

Rotation > Method Select Standard Axis.
Rotation > Axis Select –Y.
Rotation > Angle Enter 90.

Generate Subsystem

You can now generate a subsystem to encapsulate the pivot mount block diagram. The
subsystem mask provides a convenient place to initialize the MATLAB variables that you
defined the block parameters with. To generate the subsystem:

1 Select all the blocks excluding Solver Configuration.
2 Press Ctrl+G to enclose the blocks in a subsystem. Name the subsystem block Pivot

Mount.

3 Select the Pivot Mount block and create a subsystem mask, e.g., by pressing Ctrl+M.

 Model Pivot Mount

2-93

4
In the Parameters & Dialog tab of the Mask Editor, drag six edit boxes into
the Parameters group and specify their properties. Click OK.

Prompt Name

Hexagon Outer Radius HexagonR

Hexagon Thickness T

Mass Density Rho

Hexagon Color HexagonRGB

Peg Radius PegR

Peg Color PegRGB

5 In the Pivot Mount block dialog box, specify these parameters.

Parameter Value

Hexagon Outer Radius (m): 4

Hexagon Thickness (m): 0.8

Mass Density (kg/m^3): 2700

Hexagon Color [R G B]: [0.25 0.4 0.7]

Peg Radius (m): 0.4

Peg Color [R G B]: [1 0.6 0.25]

Visualize Model

Update the block diagram. You can do this by pressing Ctrl+D. Mechanics Explorer
opens with a static display of the pivot mount rigid body. To obtain the view shown in the

figure, in the Mechanics Explorer toolstrip select the isometric view button .

2 Rigid Bodies

2-94

Open Reference Model

To view a completed version of the pivot mount model, at the MATLAB command prompt
enter smdoc_pivot_mount.

Related Examples
• “Represent Binary Link Frame Tree” on page 1-33
• “Model Binary Link” on page 2-74

More About
• “Representing Frames” on page 1-6
• “Revolution and General Extrusion Shapes” on page 2-17
• “Solid Inertia” on page 2-21
• “Solid Color” on page 2-45

3

Multibody Systems

• “Modeling Joint Connections” on page 3-2
• “Assembling Multibody Models” on page 3-7
• “Mechanism Degrees of Freedom” on page 3-13
• “Model Double Pendulum” on page 3-14
• “Model Four Bar” on page 3-19
• “Find and Fix Aiming-Mechanism Assembly Errors” on page 3-26
• “Gear Constraints” on page 3-35
• “Model Rack and Pinion” on page 3-44
• “Model Planetary Gear Train” on page 3-56
• “Model Cam Mechanism” on page 3-72

3 Multibody Systems

3-2

Modeling Joint Connections

In this section...

“Joint Degrees of Freedom” on page 3-2
“Joint Primitives” on page 3-4
“Joint Inertia” on page 3-6

Joints impose between bodies the primary kinematic constraints that determine how
they can move relative to each other. A joint can be a physical connection, such as that
between the case and shaft of a linear hydraulic actuator, or a virtual connection, such
as that between the Earth and the moon. In SimMechanics, you model both connection
types using Joint blocks.

Examples of physical and virtual connections between bodies

Gear and Constraint blocks too impose kinematic constraints between bodies. How are
joint blocks different? While Gear and Constraint blocks are parameterized in terms of
the DoFs they remove between bodies, Joint blocks are parameterized in terms of the
DoFs they provide, through modules called joint primitives.

Joint Degrees of Freedom

Each Joint block connects exactly two bodies. Such a connection determines the
maximum degrees of freedom, or DoFs, that the adjoining bodies can share. These DoFs
range from zero in the Weld Joint block to six—three translational and three rotational—
in 6-DOF Joint and Bushing Joint blocks. Translation refers to a change in position and
rotation to a change in orientation.

 Modeling Joint Connections

3-3

Joint DoFs are a measure of joint mobility. Precluding other constraints in a model, a
joint with mode DoFs allows greater freedom of motion between the adjoining bodies.
Joint DoFs also have a mathematical interpretation. They are the minimum number of
state variables needed to fully determine the configuration of a joint at each time step
during simulation.

Consider a rectangular joint. This joint allows translation in a plane and it therefore
has two translational DoFs—one for each spatial dimension. At each time step, the joint
configuration is fully determined by two state variables, the position coordinates in the
plane of motion [x(t), y(t)]. This means, for example, that you can fully prescribe motion
at this joint using two position input signals.

The table summarizes the DoFs that the various Joint blocks provide.

3 Multibody Systems

3-4

The actual DoFs at a joint are often fewer in number than the joint alone would allow.
This happens when kinematic constraints elsewhere in the model limit the relative
motion of the adjoining bodies. Such constraints can arise from gears in mesh, forbidden
DoFs due to other joints in closed kinematic loops, and fixed distances and angles
between bodies, among other factors.

Joint Primitives

Joint blocks are assortments of joint primitives, basic yet complete joints of various
kinds you cannot decompose any further—at least without losing behavior such as
the rotational-translational coupling of the lead screw joint. Joint primitives range in
number from zero in the Weld Joint block to six in the Bushing Joint block. There are
five joint primitives:

• Prismatic — Allows translation along a single standard axis (x, y, or z). Joint blocks
can contain up to three prismatic joint primitives, one for each translational DoF.
Prismatic primitives are labeled P*, where the asterisk denotes the axis of motion,
e.g., Px, Py, or Pz.

 Modeling Joint Connections

3-5

• Revolute — Allows rotation about a single standard axis (x, y, or z). Joint blocks can
contain up to three revolute joint primitives, one for each rotational DoF. Revolute
primitives are labeled R*, where the asterisk denotes the axis of motion, e.g., Rx, Ry,
or Rz.

• Spherical — Allows rotation about any 3-D axis, [x, y, z]. Joint blocks contain no more
than one spherical primitive, and never in combination with revolute primitives.
Spherical primitives are labeled S.

• Lead Screw Primitive — Allows coupled rotation and translation on a standard
axis (e.g., z). This primitive converts between rotation at one end and translation at
the other. Joint blocks contain no more than one lead screw primitive. Lead screw
primitives are labeled LS*, where the asterisk denotes the axis of motion.

• Constant Velocity Joint — Allows rotation at constant velocity between intersecting
though arbitrarily aligned shafts. Joint blocks contain no more than one constant
velocity primitive. Constant velocity primitives are labeled CV.

The table summarizes the joint primitives and DoFs that the various Joint blocks
provide.

3 Multibody Systems

3-6

Why use Joint blocks with spherical primitives? Those with three revolute primitives are
susceptible to gimbal lock—the natural but often undesired loss of one rotational DoF
when any two rotation axes become aligned. Gimbal lock leads to simulation errors due
to numerical singularities. Spherical primitives eliminate the risk of gimbal-lock errors
by representing 3-D rotations using 4-D quantities known as quaternions.

Joint Inertia

SimMechanics joints are idealizations. They differ from real joints in that they have no
inertia—a suitable approximation in most models, where the impact of joint inertia on
system dynamics is often negligible. This is the case, for example, in the constant-velocity
joints of automobile driveline systems, where shaft inertia can dwarf joint inertia.

If joint inertia is important in your model, you can account for it using Solid or Inertia
blocks. Connect the block reference frame ports to the appropriate joint frames and
specify the joint inertial properties in the block dialog boxes. You can specify joint
mass or density, products of inertia, moments of inertia, and center of mass. For more
information on how to specify inertia, see “Solid Inertia” on page 2-21.

 Assembling Multibody Models

3-7

Assembling Multibody Models

In this section...

“Model Assembly” on page 3-7
“Connecting Joints” on page 3-7
“Orienting Joints” on page 3-8
“Guiding Assembly” on page 3-9
“Verifying Model Assembly” on page 3-10

Model Assembly

You model an articulated system by interconnecting bodies through joints and
occasionally gears and other constraints. Bodies contribute their inertias to the model,
while joints, gears, and constraints determine the relative degrees of freedom that exist
between the bodies. You interconnect the two component types by linking frame ports on
Joint, Gear, and Constraint blocks to frame ports on body subsystems.

SimMechanics automatically assembles your model when you update the block diagram
—for example, by selecting Simulation > Update Diagram from the Simulink menu
bar.

During model update, SimMechanics determines the initial states of joints—their
positions and velocities—so that the resulting assembly satisfies all kinematic
constraints in the model. This process occurs in two phases, with the assembly algorithm
first computing the joint positions and then the joint velocities. The complete process is
called model assembly.

Connecting Joints

Joints connect to bodies through frames. Each Joint block contains two frame ports, base
(B) and follower (F), identifying the connection points in the adjoining bodies and the
relative directions they can move in. When you connect these ports to frames in the body
subsystems, you determine how the bodies themselves connect upon model assembly.

3 Multibody Systems

3-8

Joint Frames Identifying Connection Points and Rotation Axis of Aircraft Propeller

If a joint has no actuation and no sensing outputs, its frame ports are fully
interchangeable. In this case, you can switch the bodies that the ports connect to without
affecting model dynamics or joint sensing outputs. If the joint does have actuation inputs
or sensing outputs, you may need to reverse the actuation or sensing signals to obtain the
same dynamic behavior and simulation results.

To change the connection points of a joint, you must modify the connection frames
in the adjoining body subsystems. You do this by specifying a translation transform
using a Rigid Transform block. You can add new Rigid Transform blocks to the
body subsystems or, if appropriate, change the translation transforms in existing Rigid
Transform subsystems.

For a tutorial on how to transform frames using the Rigid Transform block, see
“Represent Binary Link Frame Tree” on page 1-33. For more information on how
SimMechanics software interprets frame ports, nodes, and lines, see “Representing
Frames” on page 1-6.

Orienting Joints

To obtain the motion expected in a model, you must align its various joint motion axes
properly. This means aligning the joints themselves as observed or anticipated in the real
system. Misaligning the joint axes may lead to unexpected motion but it often leads to
something more serious, such as a failure to assemble and simulate.

You can specify and change joint alignment by rotating the connection frames local to the
adjoining body subsystems. For this purpose, you specify rotation transforms using Rigid
Transform blocks, either by adding new blocks to the body subsystems or, if appropriate,
by changing the rotation transforms in existing blocks within the subsystems.

Why change the orientation of joints through body subsystem frames? The primitives in
a Joint block each have a predetermined motion axis, such as x or z. The axis definition

 Assembling Multibody Models

3-9

is fixed and cannot be changed. Realigning the connection frames local to the adjoining
body subsystems provides a natural way to reorient joints while avoiding confusion over
which axis a particular joint uses.

For an example of how to rotate joint connection frames, see “Model Pivot Mount” on
page 2-88.

Guiding Assembly

Joints can start simulation from different states. For example, the crank joint of a crank-
rocker linkage can start at any angle from 0° to 360°. As a result, during model assembly,
SimMechanics must choose from many equally valid states. You can guide the states
chosen by specifying state targets in the Joint block dialog boxes.

Crank-Slider Mechanism in Fully Extended and Fully Retracted Initial Configurations

State targets need not be exact values. If SimMechanics cannot achieve a state target
exactly, it searches for the joint state nearest to the state target. For example, if you
specify a position state target of 60° but the joint can only reach angles of 0° to 45°,
SimMechanics attempts to assemble the joint at 45°.

How close the actual joint state is to the state target depends on the kinematic
constraints in your model, any conflicts with other state targets, and the state target
priority level—a ranking that determines which of two state targets to satisfy if they
prove to be mutually incompatible. You can set the priority level to Low or High.

SimMechanics first attempts to satisfy all state targets exactly. If a state target conflict
arises, SimMechanics ignores the low-priority state targets and attempts to satisfy only
the high-priority state targets. If a state target conflict still exists, SimMechanics ignores
also the high-priority state targets and attempts to assemble the model in the nearest
valid configuration.

You can specify state targets for all joints in an open kinematic chain. However, to
avoid simulation errors, every closed chain must contain at least one joint without state
targets.

3 Multibody Systems

3-10

Verifying Model Assembly

A model assembles successfully only if the connections between its bodies are congruous
with each other. If in satisfying one kinematic constraint, SimMechanics must violate
another kinematic constraint, the model is kinematically invalid and assembly fails. This
happens, for example, when the ground link of a four-bar assembly exceeds the combined
length of the remaining three links, preventing at least one joint from assembling.

Joint Assembly Failure in Four-Bar Linkage with Exceedingly Long Ground Link

To ensure that your model has assembled correctly, use these SimMechanics and
Simscape utilities:

• Mechanics Explorer — SimMechanics visualization utility. Visually examine your
model from different points of view to ensure that its bodies connect at the expected
locations and with the proper orientations.

 Assembling Multibody Models

3-11

• Variable Viewer — Simscape state-reporting utility. Check the assembly status of
individual joints and constraints and compare your state targets to the actual joint
states achieved during assembly.

3 Multibody Systems

3-12

• Statistics Viewer — Simscape metrics-reporting utility. Check, among other metrics,
the degrees of freedom, number of joints, and number of constraints in your model.

 Mechanism Degrees of Freedom

3-13

Mechanism Degrees of Freedom

The number and types of joints, gears, and constraints in a mechanism partially
determine its mobility—the total number of degrees of freedom, or DoFs, that the
mechanism provides and therefore the minimum number of input variables needed to
fully constrain its configuration. The mobility F of a mechanism with N bodies and j
joints, each with f DoFs follows from expressions such as the Kutzbach criterion, which
for a planar mechanism states:

F N fi
i

j

= -() - -()
=
Â3 1 3

1

Applying this criterion to a four-bar linkage, an assembly of four bodies (n = 4) and
four joints (j = 4) with one rotational DoF each (fi = 1), yields a mobility of one DoF—
indicating that a single input variable suffices to fully control the linkage configuration.
As mechanisms grow in complexity, manually calculating total DoFs becomes more time-
consuming, so SimMechanics automatically computes them for you.

You can view the mechanism DoFs through the Simscape Statistics Viewer, shown
below for the four-bar featured example. You open the Statistics Viewer from the
Simulink Editor menu bar by selecting Tools > Simscape > Statistics Viewer. Enter
sm_four_bar at the MATLAB command prompt to open the four-bar model and view its
DoFs through the Statistics Viewer.

3 Multibody Systems

3-14

Model Double Pendulum

In this section...

“Model Overview” on page 3-14
“Build Model” on page 3-15
“Guide Model Assembly” on page 3-16
“Visualize Model and Check Assembly Status” on page 3-16
“Simulate Model” on page 3-18
“Open Reference Model” on page 3-18

Model Overview

The double pendulum is a simple multibody system. It contains two links and a pivot
mount that connect with joints. This system is nonlinear and does under certain
conditions exhibit chaos. In this example, you assemble a double pendulum using custom
blocks for the links and the pivot mount. You can later use this model to study the
chaotic motion of a double pendulum.

To model the double pendulum, you represent each physical component and constraint
using a SimMechanics block. The double pendulum system contains three rigid bodies—
one pivot mount and two binary links— that connect in series through a pair of revolute

 Model Double Pendulum

3-15

joints. You represent the pivot mount and the binary links using the custom library
blocks that you created in previous examples. You represent the two joints using two
Revolute Joint blocks from the Joints library.

You can guide model assembly. By specifying joint state targets, you can instruct
SimMechanics to assemble a joint in the configuration you want. State targets that you
can specify include position and velocity. At times, a state target may conflict with other
state targets, or even with other kinematic constraints in the model. In these cases, you
can prioritize the most important state targets by assigning them a high priority level.
During assembly, if two targets conflict with each other, SimMechanics assembles the
high priority target first. To specify both state target values and priority levels, you use
the State Targets menu of the joint block dialog boxes.

Build Model

1 Start a new model.
2 Drag these blocks into the model. The two Revolute Joint blocks provide the double

pendulum two rotational degrees of freedom.

Library Block Quantity

Simscape > Utilities Solver Configuration 1
SimMechanics > Second
Generation > Utilities

Mechanism

Configuration

1

SimMechanics > Second
Generation > Frames
and Transforms

World Frame 1

SimMechanics > Second
Generation > Joints

Revolute Joint 2

3 At the MATLAB command prompt, enter smdoc_compound_rigid_bodies. A
custom block library with the same name opens up.

4 Drag these custom blocks into the model. Each block represents a rigid body in the
double pendulum. See the tutorials in the table for detailed instructions on how to
create the blocks.

Block Quantity Modeling Tutorial

Pivot Mount 1 “Model Pivot Mount” on
page 2-88

3 Multibody Systems

3-16

Block Quantity Modeling Tutorial

Binary Link A 2 “Model Binary Link” on
page 2-74

5 Connect the blocks as shown in the figure.

Guide Model Assembly

1 In the Revolute Joint block dialog boxes, select State Targets > Specify Position
Target. You can now specify the desired starting positions of the two joints.

2 In Value, enter these joint angles.

Block Name Value (degrees)

Revolute Joint 30
Revolute Joint1 -75

Visualize Model and Check Assembly Status

To visualize the model, update the block diagram. You can do this from the menu bar by
selecting Simulation > Update Diagram. Mechanics Explorer opens with a 3-D view of
the double pendulum assembly. Click the isometric view button to obtain the perspective
in the figure.

 Model Double Pendulum

3-17

To check the assembly status of the revolute joints, use the Model Report utility. You
can open this utility from the Mechanics Explorer menu bar by selecting Tools > Model
Report. The figure shows the assembly information for the double pendulum.

3 Multibody Systems

3-18

Simulate Model

Run the simulation, e.g., by selecting Simulation > Run. Mechanics Explorer shows a
3-D animation of the double pendulum assembly. The assembly moves due to gravity,
specified in the Mechanism Configuration block.

Open Reference Model

To see a complete model of the double pendulum assembly, at the MATLAB command
prompt enter:

• smdoc_double_pendulum

 Model Four Bar

3-19

Model Four Bar
In this section...

“Model Overview” on page 3-19
“Modeling Approach” on page 3-19
“Build Model” on page 3-20
“Specify Block Parameters” on page 3-23
“Guide Assembly and Visualize Model” on page 3-23
“Simulate Model” on page 3-25
“Open Reference Model” on page 3-25

Model Overview

The four-bar linkage is a planar closed-loop linkage used extensively in mechanical
machinery. This linkage has four coplanar bars that connect end-to-end with four
revolute joints. In this example, you model a four-bar linkage using the Binary Link
and Pivot Mount custom blocks that you created in previous examples. For an advanced
application of the four-bar linkage, see the bucket actuating mechanism of the Backhoe
featured example.

Modeling Approach

To model the four-bar linkage, you represent each physical component with a
SimMechanics block. The linkage in this example has five rigid bodies—three binary

3 Multibody Systems

3-20

links and two pivot mounts—that connect in a closed loop through four revolute joints.
Two of the binary links have one peg and one hole. The third binary link has two holes.
The fourth link is implicit: the fixed distance between the two coplanar pivot mounts
represents this link.

You represent the binary links and pivot mounts using the custom library blocks that
you created in previous examples. You represent the four revolute joints using four
Revolute Joint blocks from the SimMechanics Joints library.

The two pivot mounts connect rigidly to the world frame. For this reason, the implicit
link acts as the ground link. Two Rigid Transform blocks provide the rigid connection
between the two pivot mounts and the World frame. A translation offset in each Rigid
Transform block displaces the two pivot mounts symmetrically along the world frame Y
axis.

To guide model assembly, you can specify the desired initial state for one or more joints
in the model. To do this, you use the State Targets menu of the joint blocks. The
state targets that you can specify are the joint position and velocity. These are angular
quantities in revolute joints. You can specify state targets for all but one of the joints in a
closed loop.

Build Model

To model the four-bar linkage:

1 Start a new model.
2 Drag these blocks to the model. The Rigid Transform blocks specify the distance

between the two pivot mounts. This distance is the length of the implicit ground link.

Library Block Quantity

Simscape > Utilities Solver Configuration 1

 Model Four Bar

3-21

Library Block Quantity

SimMechanics > Second
Generation > Utilities

Mechanism

Configuration

1

SimMechanics > Second
Generation > Frames
and Transforms

World Frame 1

SimMechanics > Second
Generation > Frames
and Transforms

Rigid Transform 2

3 Connect and name the blocks as shown in the figure. The base frame ports of the
Rigid Transform blocks must connect to World Frame block.

4 From the SimMechanics > Second Generation > Joints library, drag four
Revolute Joint blocks into the model.

5 At the MATLAB command prompt, enter smdoc_compound_rigid_bodies. A
custom library with compound rigid body blocks opens up.

6 From the smdoc_compound_rigid_bodies library, drag these blocks. Each block
represents a rigid body present in the four bar assembly. See the tutorials in the
table for instructions on how to create the blocks.

3 Multibody Systems

3-22

Block Quantity Modeling Tutorial

Pivot Mount 2 “Model Pivot Mount” on
page 2-88

Binary Link A 2 “Model Binary Link” on
page 2-74

Binary Link B 1 “Model Two-Hole Binary
Link” on page 2-82

7 Connect and name the blocks as shown in the figure. You must position the frame
ports of the custom rigid body blocks exactly as shown.

 Model Four Bar

3-23

Specify Block Parameters

1 In the Rigid Transform block dialog boxes, specify the offset between the pivot
mounts and the world frame.

Parameter Crank-Base Transform Rocker-Base Transform

Translation > Method Standard Axis Standard Axis

Translation > Axis -Y +Y

Translation > Offset 15 in units of cm 15 in units of cm

2 In each binary link block dialog box, specify the length parameter.

Block Length (cm)

Binary Link A 10

Binary Link B 35

Binary Link A1 20

Guide Assembly and Visualize Model

The model is now complete. You can now specify the desired initial state for one or more
joints in the model. In this example, you specify an initial angle of 30° for the Base-Crank
joint. To do this:

1 Double-click the Base-Crank Revolute Joint block.
2 In the block dialog box, expand State Targets and select Position.
3 In Value, enter -30 and press OK.
4 In the menu bar, select Simulation > Update Diagram

Mechanics Explorer opens with a static display of the four-bar linkage in its initial
configuration. If the joint state targets that you specified are valid and compatible,
the initial configuration matches those state targets. The figure shows the static
display that you see in Mechanics Explorer after updating the model. To obtain the
view shown in the figure, in the Mechanics Explorer toolstrip select the isometric

view button .

3 Multibody Systems

3-24

You can guide assembly so that the four-bar linkage assembles in an open configuration
instead. To do this, you must specify a position state target for at least one more joint.
You do not have to specify this target precisely. If you have a general idea of what the
target should be, you can enter an approximate value and select a low priority level for
that target.

Closed-loop kinematic chains like the four-bar linkage are especially vulnerable to
assembly issues. Even when the model assembles, SimMechanics may fail to meet one
or more state targets. You can check the assembly status of the model and of the joints
using the Model Report utility:

1 In the Mechanics Explorer menu bar, select Tools > Model Report.
2 Examine the model report for red squares or yellow triangles. These shapes identify

issues in the assembly or in the joint state targets.

The figure shows the model report for the four bar linkage in the open configuration. A
green circle indicates that SimMechanics satisfied the Base-Crank Revolute Joint state
target precisely. A yellow circle indicates that SimMechanics satisfied the Base-Rocker
Revolute Joint state target approximately.

 Model Four Bar

3-25

Simulate Model

Run the simulation, e.g., by selecting Simulation > Run. Mechanics Explorer shows a
3-D animation of the four bar assembly. The assembly moves due to gravity, specified in
the Mechanism Configuration block.

Open Reference Model

To see a complete model of the four–bar assembly, at the MATLAB command prompt
enter:

• smdoc_four_bar

3 Multibody Systems

3-26

Find and Fix Aiming-Mechanism Assembly Errors

In this section...

“Model Overview” on page 3-26
“Explore Model” on page 3-27
“Update Model” on page 3-30
“Troubleshoot Assembly Error” on page 3-30
“Correct Assembly Error” on page 3-32
“Simulate Model” on page 3-33

Model Overview

In closed-loop systems, joints and constraints must be mutually compatible. For example,
in a four-bar linkage, all revolute joints must spin about parallel axes. If one of the joints
spins about a different axis, assembly fails and the model does not simulate.

To simplify the troubleshooting process, SimMechanics provides Model Report. This
tool helps you pinpoint the joints and constraints that caused assembly to fail. Once you
identify these joints and constraints, you can then determine which of their frames to
correct—and how to correct them.

In this example, you identify the assembly error source in an aiming mechanism model
using Model Report. Then, using Mechanics Explorer, you determine how to correct that
error source. The sm_dcrankaim_assembly_with_error featured example provides
the basis for this example.

 Find and Fix Aiming-Mechanism Assembly Errors

3-27

Explore Model

To open the model, at the MATLAB command line, enter
sm_dcrankaim_assembly_with_error. The model opens in a new window.

The figure shows a schematic of the system that the model represents. This system
contains four rigid bodies, labeled A-D. These rigid bodies connect in a closed loop via
four joints, labeled Ri, Ro, Rg, and Pg. When connected to each other, these components
form a system with one degree of freedom.

3 Multibody Systems

3-28

The model represents the components of this system using blocks. Each block represents
a physical component. A World Frame block provides the ultimate reference frame in
the model. The figure shows the block diagram that the model uses to represent the
double-crank aiming mechanism.

 Find and Fix Aiming-Mechanism Assembly Errors

3-29

To represent the rigid bodies, the model contains four subsystem blocks, labeled Rigid
Body A-D. Each subsystem contains one Solid block and multiple Rigid Transform
blocks. The Solid block provides geometry, inertia, and color to the rigid body subsystem.
The Rigid Transform blocks provide the frames that you connect the joints to. A
Reference Frame block identifies the ultimate reference frame in the subsystem block.

The model labels the rigid body subsystem blocks Rigid Body A-D. To examine the block
diagram for a rigid body subsystem, right-click the subsystem block and select Mask >
Look Under Mask. The figure shows the block diagram for Rigid Body A.

3 Multibody Systems

3-30

To represent the joints, the model contains four joint blocks. Three joints provide one
rotational degree of freedom between a pair of rigid bodies. You represent each of these
joints with a Revolute Joint block. A fourth joint provides one translational degree
of freedom between a pair of rigid bodies. You represent this joint with a Prismatic
Joint block. The model labels the revolute joint blocks Ro, Rg, and Ri, and the prismatic
joint block Pg.

Update Model

As the model name suggests, this model contains an error. The error prevents the model
from assembling successfully, which causes simulation to fail. To update the model and
investigate the assembly error:

• On the Simulink menu bar, select Simulation > Update Diagram.

Mechanics Explorer opens with a static display of your model in its initial state.
Because the model contains an assembly error, SimMechanics issues an error
message. Ignore that message for now.

Troubleshoot Assembly Error

Mechanics Explorer provides access to Model Report, a SimMechanics utility that
summarizes the assembly status of each joint and constraint in a model. Open this utility

 Find and Fix Aiming-Mechanism Assembly Errors

3-31

to determine which joint has failed to assemble. To do this, in the Mechanics Explorer
menu bar, select Tools > Model Report.

Model Report opens in a new window. A red square indicates that the model, as expected,
has failed to assemble. A second red square indicates that an unassembled joint, Pg,
is the only contributing factor in the model assembly error. This information enables
you to concentrate your troubleshooting efforts on a small block diagram region—that
surrounding the Pg joint block.

Identifying Error Root Cause

The error message that SimMechanics issued during model update identifies position
violation as the root cause of assembly failure. This suggests that the frames connected
by joint Pg are improperly aligned. To confirm this hypothesis, check the orientation of
these frames in Mechanics Explorer.

1 In the Mechanics Explorer tree pane, select Pg.

3 Multibody Systems

3-32

2 In the Mechanics Explorer visualization pane, examine the position and orientation
of the highlighted frames. These are the frames that appear in a light turquoise blue
color.

The two frames are offset along the Z axis. This offset is valid, since joint Pg contains a
prismatic primitive aligned with the Z axis, providing the frames with one translational
degree of freedom along that axis. However, the two frames are also rotated with respect
to each other about the common Z axis. This offset is invalid, since joint Pg contains no
Revolute or Spherical primitives, and hence no rotational degrees of freedom about any
axis. To correct the model assembly error, you must rotate either of the two frames so
that all of their axes are parallel to each other.

Correct Assembly Error

In this example, you apply a rotation transform to the follower frame so that its axes lie
parallel to the base frame axes. Alternatively, you could apply an equivalent rotation

 Find and Fix Aiming-Mechanism Assembly Errors

3-33

transform to the base frame. This step enables joint Pg, and hence the model itself, to
assemble successfully.

1 In the tree pane of Mechanics Explorer, right-click the Pg node and select Go To
Block. SimMechanics brings the block diagram to the front and highlights the Pg
block.

2 Right-click the Rigid Body C subsystem block and select Mask > Look Under
Mask.

3 Double-click the Slide Frame Transform block and select the new parameter
values that the table provides. Select OK.

Parameter New Value

Rotation > Pair 2 > Follower +X

Rotation > Pair 2 > Base +Y

Simulate Model

You can now simulate the model. On the Simulink menu bar, select Simulation > Run.
Mechanics Explorer opens with a 3-D animation of your model. The figure shows a
snapshot of the animation. Rotate, pan, and zoom to explore.

You can use the Model Report tool to verify the assembly status. To do this, in the
Mechanics Explorer menu bar, select Tools > Model Report. In Model Report, check

3 Multibody Systems

3-34

that the assembly status icons for the model and its joints are green circles. The green
circles indicate that the model has assembled correctly.

Related Examples
• “Model Double Pendulum” on page 3-14
• “Model Four Bar” on page 3-19

More About
• “Modeling Joint Connections” on page 3-2

 Gear Constraints

3-35

Gear Constraints

In this section...

“Gear Types” on page 3-35
“Featured Examples” on page 3-36
“Inertia, Geometry, and Efficiency” on page 3-36
“Using Gear Blocks” on page 3-36
“Assembling Rigid Bodies with Gear Constraints” on page 3-38
“Common Gear Assembly and Simulation” on page 3-39
“Rack and Pinion Assembly and Simulation” on page 3-41

You can represent gear constraints in a multibody model. To do this, SimMechanics
provides a Gears and Couplings library. This library contains gear blocks that you can
use to constrain the motion of two rigid body frames. The figure shows the gear blocks
that the library provides.

Gear Types

The Gears and Couplings > Gears library provides blocks for modeling gears. The
table summarizes the gears you can model with these blocks.

Block Description

Common Gear Constraint Transfer rotational motion between two
frames spinning about parallel axes

3 Multibody Systems

3-36

Block Description

Rack and Pinion Constraint Transfer rotational motion at a pinion into
translational motion at a rack and vice-
versa.

Bevel Gear Constraint Transfer rotational motion between two
frames spinning about arbitrarily aligned
axes.

Featured Examples

SimMechanics provides two featured examples that highlight the use of gear blocks. The
table lists these examples. To open an example model, at the MATLAB command line,
enter the model name, e.g., sm_cardan_gear.

Featured Example Model Name Gear Blocks Used

Cardan gear sm_cardan_gear Common Gear Constraint
Windshield wiper sm_windshield_wiper Rack and Pinion Constraint
Robotic wrist sm_robotic_wrist Bevel Gear Constraint

Open the models and examine the blocks for examples of how to connect the gear blocks
and specify their parameters.

Inertia, Geometry, and Efficiency

Each gear block represents a kinematic constraint between two rigid body frames. This
constraint does not account for the effects of inertia or power transmission losses. It also
does not provide gear visualization. If necessary, consider modeling these effects using
other SimMechanics and Simscape blocks. To represent gear inertia and geometry, use
the Solid block.

Using Gear Blocks

To apply a gear constraint between two rigid bodies, connect the base and follower
frames of the gear block to the rigid body frames that you want to constrain. Then, open

 Gear Constraints

3-37

the gear block dialog box and specify the gear parameters. Parameters can include gear
dimensions and ratio.

Featured example sm_cardan_gear illustrates an application of the Common
Gear block. In this model, two Common Gear blocks connect three gear rigid bodies.
Subsystems Planet Gear A, Planet B and Link, and Sun Gear represent these rigid
bodies. One Common Gear block constrains the motion of subsystem Planet Gear A with
respect to subsystem Sun Gear. The other Common Gear block constrains the motion of
subsystem Planet B and Link with respect to subsystem Planet Gear A. The figure shows
the block diagram of this model.

So that the three gear subsystems can rotate with respect to each other, the model
includes three Revolute Joint blocks. Each Revolute Joint block provides one rotational
degree of freedom between one gear subsystem and the gear carrier—a rigid body that
holds the three rotating gears. The figure shows the Mechanics Explorer display of this
model.

3 Multibody Systems

3-38

Assembling Rigid Bodies with Gear Constraints

To assemble successfully, a model must satisfy the constraints that a gear block imposes.
These include distance and orientation constraints that are specific to each block. The
table summarizes these constraints.

Gear Constraint Description

Frame Distance The model must maintain a fixed distance
between the base and follower gear frames.
The value of this distance depends on the
gear block that you use.

Frame Orientation The model must orient the base and
follower gear frames according to rules that
are specific to each block.

The rigid body frames that the gear block connects must have the proper number
and type of degrees of freedom. For a Common Gear block, the frames must have two
rotational degrees of freedom with respect to each other. For a Rack and Pinion block, the
frames must have one translational and one rotational degree of freedom with respect to
each other. You provide these degrees of freedom using joint blocks.

• Use joint blocks with revolute primitives to provide the rotational degrees of freedom.

 Gear Constraints

3-39

• Use joint blocks with prismatic primitives to provide the translational degrees of
freedom.

Common Gear Assembly and Simulation

During assembly, the Common Gear block requires that the base and follower frame
Z axes align. These are the rotation axes of the two gear frames. Failure to align the Z
axes of the two gear frames results in assembly failure during model update. The figure
illustrates the common gear rigid bodies, frames, and distance constraints.

Connect the gear rigid bodies to joints possessing one (or more) revolute joint primitives.
The rotational axis of the revolute primitive must align with the Z axis of the gear frame
that it connects to. This ensures that the gear frames possess a rotational degree of
freedom about the correct axis (Z).

Common Gear Types

With the Common Gear block, you can represent internal and external gear constraints.
If the gear constraint is internal, the gear frames rotate in the same direction. If it is
external, the gear frames rotate in opposite directions. The figure illustrates the two
common gear types that you can represent and their relative rotation senses.

3 Multibody Systems

3-40

Gear Dimensions

In the block dialog box, you specify the gear dimensions. Depending on the specification
method that you choose, you can specify the center-to-center distance between gears
or the pitch circle radii. During model assembly, the Common Gear block imposes this
distance constraint between the two gear frames. This ensures that the gear assembles
properly or, if issues arise, that you can correct any assembly issues early on.

You specify the gear relative sizes in the block dialog box. If you select the Center
Distance and Ratio specification method, the gear ratio specifies which of the two
gears is the larger one. If the gear ratio is greater than one, the follower gear is the larger
gear. If the gear ratio is smaller than one, the base gear is the larger gear.

If you specify an internal gear type, the larger gear is the ring gear. A gear ratio greater
than unity makes the follower gear the ring gear. A gear ratio smaller than unity makes
the base gear the ring gear.

Gear Pitch Circles

The pitch circle of a gear is an imaginary circle that passes through the contact point
between gears. The pitch radius of a gear is the radius of this imaginary circle. The figure
illustrates the pitch circles of two meshing gears and their pitch radii. These are the gear
radii that you enter in the block dialog box when you select the Pitch Circle Radii
specification method.

 Gear Constraints

3-41

Simulation

During simulation, the Common Gear block requires that the model maintain the proper
distance between gear frames. This distance must equal either the center-to-center
distance or the sum of base and follower gear pitch radii that you specify in the block
dialog box. The structure of the model must be such that the gears maintain this distance
between them. Failure to maintain this distance results in an error during simulation.

In the Cardan Gear example, the Carrier rigid body fixes the distances between the three
gears. As long as these distances match the gear dimensions that you specify in the block
dialog box, the model should simulate without an issue.

Rack and Pinion Assembly and Simulation

The base frame of the Rack and Pinion block represents the pinion. It can rotate about
its Z axis. The follower frame of the same block represents the rack. It can translate
along its Z axis. During assembly, the Rack and Pinion block requires that the base and
follower frame Z axes be mutually orthogonal.

When the gear is in its zero configuration—a configuration in which the angle and
displacement between base and follower frames are taken as zero—the follower frame
Z axis is also parallel to the base frame X axis, and base and follower frame Y axes are
parallel to each other. The follower frame origin lies along the base frame -Y axis, at a
distance equal to the base gear pitch radius. The figure illustrates these constraints.

3 Multibody Systems

3-42

To ensure the rack and pinion can move with respect to each other, you must connect the
rack and pinion rigid bodies to joints blocks. The joint block on the rack side must have
one (or more) prismatic primitives. At least one primitive axis must align with the Z axis
of the follower gear frame. The joint block on the pinion side must have one (or more)
revolute primitives. At least one revolute axis must align with the Z axis of the base gear
frame.

Gear Pitch Circles

The pitch circle of a rack and pinion gear is the imaginary circle that passes through
the contact point between the pinion and the rack. The pitch radius is the radius of this
imaginary circle. The figure illustrates the pitch circle for a rack and pinion. This is the
circle whose radius you enter in the block dialog box.

 Gear Constraints

3-43

Simulation

During simulation, the Rack and Pinion block requires that the model maintain the
proper distance between gear frames. The distance between the base frame origin
(pinion) and the follower frame Z axis must equal the pinion radius. Failure to maintain
this distance between gear frames results in a simulation error.

3 Multibody Systems

3-44

Model Rack and Pinion

In this section...

“Model Overview” on page 3-44
“Model Pinion” on page 3-46
“Model Rack” on page 3-48
“Add Rack and Pinion Constraint” on page 3-51
“Actuate Model” on page 3-52
“Simulate Model” on page 3-54
“Open Complete Model” on page 3-55

Model Overview

In this tutorial, you model a kinematic constraint between rack and pinion components.
The constraint causes the two components to move in sync such that a pinion rotation
corresponds to a rack translation:

V R
F B B

= w · ,

where:

• VF is the rack translational velocity.
• ωB is the pinion rotational velocity.
• RB is the radius of the pinion pitch circle, an imaginary circle intersecting the contact

point between rack and pinion teeth.

 Model Rack and Pinion

3-45

The model uses three key blocks:

• Solid — Specify rack and pinion geometry, inertia, and color
• Joint — Provide motion degrees of freedom to the rack and pinion components. These

degrees of freedom enable the rack to translate and the pinion to rotate with respect
to the world frame.

• Rack and Pinion Constraint — Constrain the motion of the rack and pinion
components so that they move in a meshed configuration.

The figure shows how these blocks connect in the model.

3 Multibody Systems

3-46

For simplicity, the rack has a brick shape and the pinion has a cylinder shape. These
shapes depend on several dimensions, shown in the figure. You specify each dimension
using a MATLAB variable. After model assembly, you can add detail to the component
shapes. For example, you can specify an involute tooth profile for the rack and pinion.

Rack and Pinion Dimensions

Model Pinion

1 Start a new model.
2 Add these blocks to the model.

Library Block

Simscape > Utilities Solver Configuration

SimMechanics > Second Generation
> Frames and Transforms

World Frame

SimMechanics > Second Generation
> Utilities

Mechanism Configuration

 Model Rack and Pinion

3-47

Library Block

SimMechanics > Second Generation
> Joints

Revolute Joint

SimMechanics > Second Generation
> Body Elements

Solid

The Solid block specifies the component geometry, inertia, and color. The joint block
provides the component its motion degrees of freedom—in this case, one rotational
degree of freedom with respect to the world frame.

3 Connect and name the blocks as shown in the figure. Port frames joined by a
connection line are coincident in space.

4 In the Pinion block dialog box, specify geometry, inertia, and color.

Parameter Enter or Select

Geometry > Shape Cylinder

Geometry > Radius Pinion.R, units of cm
Geometry > Length Pinion.T, units of cm
Inertia > Density Rho

Graphic > Visual Properties > Color Pinion.RGB

3 Multibody Systems

3-48

5 In the model workspace, initialize the MATLAB variables you entered in the block
dialog boxes:

% Common Parameters

Rho = 2700; % Mass density of both rack and pinion components

% Pinion Parameters

Pinion.R = 10;

Pinion.T = 4;

Pinion.RGB = [0.8, 0.4, 0];

6 Update the block diagram. You can do this by selecting Simulation > Update
Diagram. Mechanics Explorer opens with a 3-D view of the pinion gear. To obtain
the view shown in the figure, in the Mechanics Explorer toolstrip set the View
convention parameter to Y up (XY Front). Then, select the isometric view

button .

Model Rack

1 Add these blocks to the model.

Library Block

SimMechanics > Second Generation
> Frames and Transforms

Rigid Transform

 Model Rack and Pinion

3-49

Library Block

SimMechanics > Second Generation
> Joints

Prismatic Joint

SimMechanics > Second Generation
> Body Elements

Solid

The Rigid Transform block sets the rack position and pose with respect to the pinion.
These quantities must satisfy the assembly conditions later imposed by the Rack and
Pinion Constraint block.

2 Connect and name the blocks as shown in the figure.

3 In the Rack block dialog box, specify geometry, inertia, and color.

Parameter Select or Enter

Geometry > Shape Brick

Geometry > Dimensions [Rack.T,Rack.H,Rack.L], units of cm

3 Multibody Systems

3-50

Parameter Select or Enter

Inertia > Density Rho

Graphic > Visual Properties > Color Rack.RGB

4 In the Rigid Transform block dialog box, specify the rack position and pose with
respect to the pinion.

Parameter Select or Enter

Rotation > Method Standard Axis

Rotation > Axis +Y

Rotation > Angle 90

Translation > Method Standard Axis

Translation > Axis -Y

Translation > Offset Pinion.R in units of cm

The rotation transform makes the rack and pinion Z axes mutually orthogonal while
keeping the Y axes parallel. The translation transform separates the rack and pinion
frame origins by a distance equal to the pinion pitch radius. These transforms satisfy
the assembly conditions imposed by the Rack and Pinion Constraint block.

5 In the model workspace, initialize the new MATLAB variables entered in the block
dialog boxes:

% Rack Parameters

Rack.L = 80;

Rack.H = 2;

Rack.T = Pinion.T;

Rack.RGB = [0.2, 0.4, 0.7];

6 Update the block diagram. Mechanics Explorer displays a 3-D view of the rack and
pinion assembly. Examine the assembly from different viewpoints and verify it is

accurate. You can view the rack and pinion frames by clicking the frame button
in the Mechanics Explorer tool bar.

 Model Rack and Pinion

3-51

Add Rack and Pinion Constraint

The model is nearly complete. It remains to constrain the motion of the rack and pinion
components. You add this kinematic constraint using the Rack and Pinion Constraint
block.

1 From the Gears and Couplings > Gears library, drag a Rack and Pinion
Constraint block to the model.

2 Connect the block as shown in the figure. The follower frame port connects to the
Rack block, while the base frame port connects to the Pinion block.

3 Multibody Systems

3-52

3 In the dialog box of the Rack and Pinion Constraint block, enter Pinion.R in
Pinion Radius.

4 Update the block diagram. Mechanics Explorer shows a 3-D display of the updated
rack and pinion assembly. Assembly errors due to gear constraints become evident
at this stage. If SimMechanics issues an error message, correct the model before
attempting to run the simulation.

Actuate Model

1 In the Revolute Joint block dialog box, for Z Revolute Primitive (Rz) > Actuation
> Torque, select Provided by Input.

The block exposes a physical signal input port. You use this port to specify a driving
torque acting on the pinion. During simulation, this torque will be the source of
motion in the model.

2 Drag these blocks to specify and process the input torque signal.

 Model Rack and Pinion

3-53

Library Block

Simulink > Sources Signal Builder

Simscape > Utilities Simulink-PS Converter

The Simulink-PS Converter block converts the Simulink input signal into a physical
signal compatible with SimMechanics blocks. It also provides signal filtering, which
enables you to smooth discontinuous signals.

3 Connect the blocks as shown in the figure.

4 In the Signal Builder block dialog box, draw the input signal as shown in the figure.
This signal starts with a positive torque followed by a negative torque. The positive
torque causes the pinion to rotate counterclockwise about the base frame +Z axis and
the rack to translate along the follower frame +Z axis.

3 Multibody Systems

3-54

5 In the Simulink-PS Converter block dialog box, in the Input Handling tab, specify
second-order filtering with a time constant of 0.1 s. This filter helps to smooth the
discontinuities of the input signal.

Parameter Select or Enter

Filtering and derivatives Filter input

Input filtering order Second-order filtering

Input filtering time constant (in
seconds)

0.1

Simulate Model

Run the simulation. You can do this by selecting Simulation > Run. Mechanics
Explorer plays a physics-based animation of the rack and pinion assembly. To better see

motion during playback, select the frame button in the Mechanics Explorer tool bar.

 Model Rack and Pinion

3-55

Open Complete Model

To view a complete model of the rack and pinion mechanism, at the MATLAB command
prompt enter:

smdoc_rack_pinion_c

For an example using a helper function to generate a rough involute tooth profile, enter

smdoc_rack_pinion_d

3 Multibody Systems

3-56

Model Planetary Gear Train

In this section...

“Model Overview” on page 3-56
“Model Sun-Planet Gear Set” on page 3-57
“Constrain Sun-Planet Gear Motion” on page 3-60
“Add Ring Gear” on page 3-62
“Add Gear Carrier” on page 3-65
“Add More Planet Gears” on page 3-70

Model Overview

Planetary gear trains are common in industrial, automotive, and aerospace systems. A
typical application is the automatic transmission system of car. From a kinematic point
of view, what sets this mechanism apart is the kinematic constraint set between gear
pairs. These constraints fix the angular velocity ratios of the gear pairs, causing the
gears in each pair to move in sync.

In SimMechanics, you represent the kinematic constraint between meshed gears using
blocks from the Gears sublibrary. This tutorial shows you how to use these blocks to
model a planetary gear train. The gear train contains four rigid bodies:

• Sun gear
• Planet gear
• Ring gear
• Planet carrier

Each rigid body, including the planet carrier, can spin about its central axis. In addition,
each planet gear can revolve about the sun gear. Joint blocks provide the required
degrees of freedom, while gear constraint blocks ensure the gears move as if they were
meshed.

 Model Planetary Gear Train

3-57

Model Sun-Planet Gear Set

Model the gear rigid bodies and connect them with the proper degrees of freedom. In a
later step, you add gear constraints to this model.

1 Drag these blocks to a new model.

Library Block Quantity

Body Elements Solid 2
Joints Revolute Joint 1
Joints Planar Joint 1
Frames and Transforms Rigid Transform 1
Frames and Transforms World Frame 1
Utilities Mechanism

Configuration

1

Simscape > Utilities Solver Configuration 1

2 Connect and name the blocks as shown.

3 Multibody Systems

3-58

3 In the Sun Gear block dialog box, specify these parameters.

Parameter Setting

Geometry > Shape Select General Extrusion.
Geometry > Cross-Section Enter

simmechanics.demohelpers.gear_profile(2*Sun.R,Sun.N,A).
Select units of cm.

Geometry > Length Enter T. Select units of cm.

 Model Planetary Gear Train

3-59

Parameter Setting

Inertia > Density Enter Rho.
Graphic > Visual Properties > Color Enter Sun.RGB.

The function simmechanics.demohelpers.gear_profile produces a rough
approximation of an involute gear profile.

4 In the Planet Gear block dialog box, specify these parameters.

Parameter Setting

Geometry > Shape Select General Extrusion.
Geometry > Cross-Section Enter

simmechanics.demohelpers.gear_profile(2*Planet.R,Planet.N,A).
Select units of cm.

Geometry > Length Enter T. Select units of cm.
Inertia > Density Enter Rho.
Graphic > Visual Properties > Color Enter Planet.RGB.

5 In the Rigid Transform block dialog box, specify these parameters.

Parameter Setting

Translation > Method Select Standard Axis.
Translation > Axis Select +Y.
Translation > Offset Enter Sun.R + Planet.R. Select units

of cm.

6 In the model workspace, define the block parameters using MATLAB code:

% Common Parameters

Rho = 2700;

T = 3;

A = 0.8; % Gear Addendum

% Sun Gear Parameters

Sun.RGB = [0.75 0.75 0.75];

Sun.R = 15;

Sun.N = 40;

% Planet Gear Parameters

3 Multibody Systems

3-60

Planet.RGB = [0.65 0.65 0.65];

Planet.R = 7.5;

Planet.N = Planet.R/Sun.R*Sun.N;

7 Simulate the model. To induce motion, try adjusting the velocity state targets in the
joint block dialog boxes. Notice that the sun and planet gears move independently of
each other. To constrain gear motion, you must add a gear constraint block between
the gear solid blocks.

You can open a copy of the resulting model. At the MATLAB command line, enter
smdoc_planetary_gear_a.

Constrain Sun-Planet Gear Motion

Specify the kinematic constraints acting between the sun and planet gears. These
constraints ensure that the gears move in a meshed fashion.

1 Drag these blocks to the sun-planet gear model.

Library Block

Constraints Distance Constraint

Gears and Couplings > Gears Common Gear Constraint

2 Connect the blocks as shown. The new blocks are highlighted.

 Model Planetary Gear Train

3-61

3 In the Common Gear Constraint block dialog box, specify these parameters.

Parameter Setting

Specification Method Select Pitch Circle Radii.
Specification Method > Base Gear
Radius

Enter Sun.R. Select units of cm.

Specification Method > Follower
Gear Radius

Enter Planet.R. Select units of cm.

3 Multibody Systems

3-62

4 In the Distance Constraint block dialog box, specify this parameter:

• Distance — Enter Sun.R + Planet.R. Select units of cm.
5 Simulate the model. To induce motion, try adjusting the velocity state targets in the

joint block dialog boxes. Notice that the sun and planet gears now move in sync.

You can open a copy of the resulting model. At the MATLAB command line, enter
smdoc_planetary_gear_b.

Add Ring Gear

Model the ring gear rigid body, connect it with the proper degrees of freedom, and
constrain its motion with respect to the planet gear.

1 Add these blocks to the sun-planet gear model.

Library Block

Body Elements Solid

Joints Revolute Joint

Gears and Couplings > Gears Common Gear Constraint

2 Connect and name the blocks as shown. The new blocks are highlighted.

 Model Planetary Gear Train

3-63

3 Multibody Systems

3-64

3 In the Ring Gear block dialog box, specify these parameters.

Parameter Setting

Geometry > Shape Select General Extrusion.
Geometry > Cross-Section Enter Ring.CS. Select units of cm.
Geometry > Length Enter T.
Inertia > Density Enter Rho.
Graphic > Visual Properties > Color Enter Ring.RGB.

4 In the Common Gear Constraint1 block dialog box, specify these parameters.

Parameter Setting

Type Select Internal.
Specification Method Select Pitch Circle Radii.
Specification Method > Base Gear
Radius

Enter Planet.R. Select units of cm.

Specification Method > Follower
Gear Radius

Enter Ring.R. Select units of cm.

5 In the model workspace, define the Ring Gear block parameters using MATLAB
code:

% Ring Gear Parameters

Ring.RGB = [0.85 0.45 0];

Ring.R = Sun.R + 2*Planet.R;

Ring.N = Ring.R/Planet.R*Planet.N;

Ring.Theta = linspace(-pi/Ring.N,2*pi-pi/Ring.N,100)';

Ring.RO = 1.1*Ring.R;

Ring.CSO = [Ring.RO*cos(Ring.Theta) Ring.RO*sin(Ring.Theta)];

Ring.CSI = simmechanics.demohelpers.gear_profile(2*Ring.R,Ring.N,A);

Ring.CSI = [Ring.CSI; Ring.CSI(1,:)];

Ring.CS = [Ring.CSO; flipud(Ring.CSI)];

6 Simulate the model. To induce motion, try adjusting the velocity state targets in
the joint block dialog boxes. Notice that the sun, planet, and ring gears move in a
meshed fashion.

 Model Planetary Gear Train

3-65

You can open a copy of the resulting model. At the MATLAB command line, enter
smdoc_planetary_gear_c.

Add Gear Carrier

Up to now, you have kept the sun and planet gears at a fixed distance using a Distance
Constraint block. In an actual planetary gear, a gear carrier enforces this constraint.
Model the gear carrier and connect it between the sun and planet gears.

1 Remove these blocks from the planetary gear model:

• Planar Joint
• Rigid Transform
• Distance Constraint

3 Multibody Systems

3-66

 Model Planetary Gear Train

3-67

2 Add these blocks to the planetary gear model.

Library Block Quantity

Body Elements Solid 1
Joints Revolute Joint 2
Frames and Transforms Rigid Transform 2

3 Connect and name the blocks as shown.

Pay close attention to the Rigid Transform block orientation: the B frame ports
should face the Solid block. The new blocks are highlighted.

3 Multibody Systems

3-68

4 In the Carrier block dialog box, specify these parameters.

Parameter Setting

Geometry > Shape Select General Extrusion.
Geometry > Cross-Section Enter Carrier.CS. Select units of cm.
Geometry > Length Enter Carrier.T.

 Model Planetary Gear Train

3-69

Parameter Setting

Inertia > Density Enter Rho.
Graphic > Visual Properties > Color Enter Carrier.RGB.

5 In the Rigid Transform block dialog box, specify these parameters.

Parameter Setting

Translation > Method Select Cartesian.
Translation > Offset Enter [Carrier.L/2 0 -(Carrier.T

+T)/2]. Select units of cm.

6 In the Rigid Transform1 block dialog box, specify these parameters.

Parameter Setting

Translation > Method Select Cartesian.
Translation > Offset Enter [-Carrier.L/2 0 -(Carrier.T

+T)/2]. Select units of cm.

7 In the model workspace, define the Carrier block parameters using MATLAB code:

% Gear Carrier Parameters

Carrier.RGB = [0.25 0.4 0.7];

Carrier.L = Sun.R + Planet.R;

Carrier.W = 2*T;

Carrier.T = T/2;

Theta = (90:1:270)'*pi/180;

Beta = (-90:1:90)'*pi/180;

Carrier.CS = [-Carrier.L/2 + Carrier.W/2*cos(Theta) ...

Carrier.W/2*sin(Theta); Carrier.L/2 + Carrier.W/2*cos(Beta), ...

Carrier.W/2*sin(Beta)];

8 Simulate the model. To induce motion, try adjusting the velocity state targets in the
joint block dialog boxes. Notice that the gear carrier now performs the task of the
Distance Constraint block.

3 Multibody Systems

3-70

You can open a copy of the resulting model. At the MATLAB command line, enter
smdoc_planetary_gear_d.

Add More Planet Gears

Experiment with the model by adding more planet gears. Remember that you
must change the Carrier rigid body to accommodate any additional planet gears.
To see an example with four planet gears, at the MATLAB command line enter
smdoc_planetary_gear_e.

 Model Planetary Gear Train

3-71

3 Multibody Systems

3-72

Model Cam Mechanism

In this section...

“Model Overview” on page 3-72
“Geometry Ports” on page 3-73
“Spline Curves” on page 3-75
“Point On Curve Constraints” on page 3-76
“Model Eccentric Cam” on page 3-76
“Model Cam Follower” on page 3-82
“Interactively Create Frame at Follower Tip” on page 3-84
“Constrain Cam and Follower” on page 3-88

Model Overview

This tutorial shows how to model an eccentric cam mechanism. The mechanism consists
of an eccentric disk (the cam) with a lever (the cam follower) mounted on its periphery.
The distance between the rotation axis and perimeter of the cam varies with rotation
angle, causing the follower to translate in a reciprocating motion.

 Model Cam Mechanism

3-73

Cam Mechanism Schematic

To work, the cam mechanism must constrain the follower tip (a point) to lie on the
cam periphery (a curve). This type of constraint is known as point-on-curve. The same
constraint is at work, for example, in a roller coaster cart bound to the perimeter of a
track. You model this constraint using the Point On Curve Constraint block.

Any frame origin associated with a frame port can be a constraint point. Any curve
associated with a geometry port can be a constraint curve. In this example, a frame
origin positioned at the follower tip provides the constraint point. A circular spline curve
defined in a Spline block provides the constraint curve.

Geometry Ports

Geometry ports are analogues of frame ports. In the same way that frame ports identify
frames on bodies, geometry ports identify curves and surfaces. You use these ports to
apply kinematic constraints between the frames, curves, and surfaces that the ports
represent.

You can then apply kinematic constraints between the frames, curves, and surfaces given
by these ports.

3 Multibody Systems

3-74

If a block has an intrinsic curve or surface definition, its geometry port makes that
definition available to other blocks. If a block does not have such a definition, its
geometry port enables you to reference one through a geometry connection line.

In this example, the Spline block provides an intrinsic curve definition. You specify this
curve in the Spline block dialog box. The Point On Curve Constraint block, which does
not have an intrinsic curve definition, then references this curve through a geometry
connection line to the Spline block.

You can branch a geometry connection line, for example, so that it joins one Spline block
to several Point On Curve Constraint blocks. Such a connection enables you to constrain
various cam followers to the same cam or roller coaster carts to the same track.

However, branched or not, a geometry connection line must have exactly one geometry
definition. If two blocks with intrinsic geometry definitions attach to the same geometry
connection line, SimMechanics ignores one. If no such block connects to a geometry
connection line, the model does not simulate. The figure shows a valid branched
geometry line between one cam and three point-on-curve constraints.

 Model Cam Mechanism

3-75

Spline Curves

The Spline block enables you to model a smooth, continuous curve. In mechanical
systems, such curves are generally limited to contours on bodies. To preserve the parallel
between your model and the system it represents, use the Spline block in the body
subsystem that the spline curve is based on.

3 Multibody Systems

3-76

In this example, the spline curve represents the cam profile, a 2-D circle on the periphery
of the cam. For this reason, you place the Spline block in the subsystem that represents
the cam body. This approach treats the spline curve as part not of the constraint
definition but of the body definition.

Treating the constraint curve as part of the cam body subsystem enables you to replace
one cam subsystem for another without having to change anything else in the model. It
also enables you to parameterize both the cam solid properties and spline curve in terms
of MATLAB variables defined in a common subsystem mask.

To create the spline curve, the Spline block applies smooth interpolation between the
data points you specify in the block dialog box. The interpolation ensures that the curve
and its first two derivatives are continuous at each point. These constraints enable you to
specify relatively complex curves with a only small number of interpolation points.

Because spline curves need only a small number of interpolation points, they are more
computationally efficient than other curve types. However, if you specify a sufficiently
large number of interpolation points, spline curves can slow down simulation. Try
starting with a small number of interpolation points and gradually adding more until you
reach the curve precision you need.

Point On Curve Constraints

The Point On Curve Constraint block merely applies a constraint between a point and
a curve. It defines neither the constraint point nor the constraint curve themselves.
You must identify the constraint point externally by connecting the frame port of the
Point On Curve Constraint block to another frame port in your model. The frame origin
associated with the frame port or line is the constraint point.

Similarly, you must identify the constraint curve externally by connecting the geometry
port of the Point On Curve Constraint block to another geometry port in your model. The
geometry connection must be to a block with intrinsic curve definition, such as Spline.
The curve associated with the geometry port is the constraint curve.

Model Eccentric Cam

Add and connect blocks.

1 At the MATLAB command prompt, enter smnew. MATLAB opens the SimMechanics
library and a model template with commonly used blocks. Remove all but the
Mechanism Configuration, World Frame, and Solver Configuration blocks.

 Model Cam Mechanism

3-77

2 Add these blocks to the model canvas.

Library Block Purpose

Joints Revolute Joint Provide the cam one
rotational degree of
freedom relative to the
World frame.

Frames and Transforms Rigid Transform Specify translational offset
between cam center of mass
and rotation axis.

Body Elements Solid Provide the solid properties
of the cam body, including
its geometry, inertia, and
color.

Curves and Surfaces Spline Provide the cam profile for
referencing in the Point On
Curve Constraint block.

3 Connect the blocks as shown. Ensure that the base frame port of the Rigid
Transform block faces the reference frame port of the Solid block.

3 Multibody Systems

3-78

The Spline block provides the curve coordinates relative to its reference frame port.
The origin of this frame coincides with the [0,0] coordinate.

Specify the block parameters.

1 In the Rigid Transform block dialog box, specify these parameters.

Parameter Value

Translation > Method Standard Axis

Translation > Axis +Y

Translation > Offset camOffset, units of in

The string camOffset is the translational offset between the cam center of mass
and rotation axis specified as a MATLAB variable. You later initialize this and other
MATLAB variables in the model workspace.

2 In the Solid block dialog box, specify these parameters.

Parameter Value

Geometry > Shape Cylinder

Geometry > Radius r, units of in
Geometry > Length t, units of in
Inertia > Density rho

Graphic > Visual Properties > Color rgbCam

The strings r, t, rho, rgbCam are the cam properties specified as MATLAB
variables.

3 In the Spline curve block, specify these parameters.

Parameter Value

Interpolation Points camProfile, units of in
Graphic > Visual Properties > Color rgbSpline

The string camProfile is the spline curve specified as a MATLAB variable. The
string rgbSpline is the color of the spline curve.

 Model Cam Mechanism

3-79

4 In the model workspace, define the MATLAB variables referenced in the block dialog
boxes by entering this code:

% Cam parameters

r = 1; % Cam radius

t = 0.3; % Cam thickness

rho = 2700; % Aluminum density, kg/m^3

rgbCam = [1,1,1]; % Cam color

camOffset = r/3; % Distance from rotation axis to CM

% Spline parameters

rgbSpline = [210,120,0]/255; % Spline color

n = 6; % Number of interpolation points

theta = linspace(0,2*pi*(n-1)/n,n)'; % Angle vector

% Spline coordinates

x = r*cos(theta); % Interpolation-point x coordinates

y = r*sin(theta); % Interpolation-point y coordinates

camProfile = [x,y]; % Curve coordinate matrix

The spline portion of the code specifies the circular curve shown in the figure. You
can view the spline curve in the visualization pane of the Spline block dialog box.
The figure shows a top view of the curve.

3 Multibody Systems

3-80

Drag a selection box around the Rigid Transform, Solid, and Spline blocks. Then, select
the Create Subsystem action button. Name the new Subsystem block Cam. This block
represents the cam body.

 Model Cam Mechanism

3-81

To visualize the cam body, update the diagram. You can do this from the Simulink menu
bar, by selecting Simulation > Update diagram. Mechanics Explorer opens with a
visualization of the model. To obtain the view shown, in the Mechanics Explorer toolstrip,
set the View convention parameter to Y Up (XY Front). Then, select the Isometric
View button.

3 Multibody Systems

3-82

Model Cam Follower

Add and connect blocks.

1 Add these blocks to the model.

Library Block Purpose

Joints Prismatic Joint Provide the cam follower
one translational degree
of freedom relative to the
World frame.

Frames and Transforms Rigid Transform Specify the relative
orientation of the cam
follower.

Body Elements Solid Provide the solid properties
of the cam follower,
including its geometry,
inertia, and color.

2 Connect the blocks as shown. Ensure the base frame port of the Rigid Transform
block connects to the World frame line. Name the Solid block Follower.

 Model Cam Mechanism

3-83

Specify the block parameters.

1 In the Rigid Transform block dialog box, specify these parameters.

Parameter Value

Rotation > Method Standard Axis

Rotation > Axis +X

Rotation > Angle -90

This rotation transform ensures that the translational axis of the cam follower is in
the rotation plane of the cam.

2 In the Solid block dialog box, specify these parameters.

3 Multibody Systems

3-84

Parameter Value

Geometry > Shape Brick

Geometry > Dimensions sizeFollower, units of in.
Inertia > Density rho

Graphic > Visual Properties > Color rgbFollower

The strings sizeFollower, rho, and rgbFollower are the cam follower properties
specified as MATLAB variables.

3 In the model workspace, initialize the cam follower properties by adding this code:

% Follower parameters

sizeFollower = [0.2 0.2 1.5]; % Follower dimensions

rgbFollower = [0.5,0.5,0.5]; % Follower color

Update the diagram. Mechanics Explorer shows the updated model visualization. The
cam and follower bodies overlap as the follower tip is not yet constrained to the cam
periphery.

Interactively Create Frame at Follower Tip

By default, the reference frame of a brick solid such as Follower is located at the center
of mass. To apply the cam constraint to the bottom plane of the brick shape, you must

 Model Cam Mechanism

3-85

create a new frame. You can create new frames interactively in the Solid block dialog box
using the frame-creation interface.

1 In the Solid block dialog box, expand the Frames area and select the Create button.
If you make any changes to the block parameters, you must first select the Update

Visualization button .
2 In the frame-creation interface, under Frame Origin, select Based on Geometric

Feature. This option enables you to place the frame origin at the center of the
selected geometric feature, be it a plane, a line, or a point. If you select a point, the
frame origin coincides with that point.

3 In the visualization pane, rotate the solid and select its bottom plane. This plane is
normal to the -z axis. The visualization pane highlights the selected plane. An arrow
shows the center and normal vector of this plane.

4 Under Frame Origin, select the Use Selected Feature button. This button sets
the center of the selected surface as the origin of the new frame. By default, the
frame orientation is that of the solid reference frame.

3 Multibody Systems

3-86

5 Select Save. The block saves the new frame definition without committing it to the
model. If you close the block dialog box without first selecting Apply or OK, the
block discards the new frame definition.

6 In the Frames area, clear the Show Port R check box. The block hides the
reference frame port. You do not need this port in this model. Select OK to commit
your changes to the model.

7 Rotate the Follower block and connect its new frame port, labeled F1, to the model as
shown.

 Model Cam Mechanism

3-87

Update the diagram. Mechanics Explorer shows the updated model visualization. The
model assembles with the cam follower in a new position, though the cam and follower
bodies are still unconstrained.

3 Multibody Systems

3-88

Constrain Cam and Follower

The model now has the bodies it needs, cam and follower, each with the correct degrees of
freedom. To complete the model, you need only constrain the two bodies.

1 From the Constraints library, drag a Point On Curve Constraint block.
2 Connect the block as shown. Ensure that the base geometry port connects to the

geometry port of the Cam subsystem block. The base geometry port identifies the
constraint curve.

 Model Cam Mechanism

3-89

Set the cam in motion by specifying a nonzero initial velocity. Set gravity to zero to
ensure uniform motion of the cam.

1 In the Revolute Joint block dialog box, specify these parameters.

Parameter Setting

State Targets > Specify Velocity
Target

Select check box.

State Targets > Specify Velocity
Target > Value

Enter 0.5. Select units of rev/s.

2 In the Mechanism Configuration block, set the Uniform Gravity parameter to
None.

3 Multibody Systems

3-90

Simulate the model. You can do this from the Simulink menu bar by selecting
Simulation > Run. Mechanics Explorer shows a physics-based animation of the cam
mechanism.

4

Internal Mechanics, Actuation and
Sensing

• “Modeling Gravity” on page 4-2
• “Model Planetary Orbit Due to Gravity” on page 4-7
• “Joint Actuation” on page 4-18
• “Specify Motion Input Derivatives” on page 4-26
• “Joint Actuation Limitations” on page 4-27
• “Actuating and Sensing Using Physical Signals” on page 4-29
• “Forces and Torques Between Arbitrary Bodies” on page 4-32
• “Sensing” on page 4-37
• “Force and Torque Sensing” on page 4-40
• “Motion Sensing” on page 4-44
• “Rotational Measurements” on page 4-49
• “Translational Measurements” on page 4-54
• “Measurement Frames” on page 4-62
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Actuate Joint in Four-Bar Model” on page 4-71
• “Analyze Coupler Curves at Various Coupler Lengths” on page 4-83
• “Sense Forces and Torques at Joints” on page 4-89
• “Sense Internal Forces in Double-Pendulum Link” on page 4-97
• “Prescribe Joint Motion in Four-Bar Model” on page 4-103
• “Prescribe Joint Motion in Planar Manipulator Model” on page 4-108

4 Internal Mechanics, Actuation and Sensing

4-2

Modeling Gravity

In this section...

“Gravity Models” on page 4-2
“Gravitational Force Magnitude” on page 4-3
“Force Position and Direction” on page 4-4
“Gravitational Torques” on page 4-5

Gravity Models

Gravity influences motion in many natural and engineered systems. These range in scale
from the very large, such as the planets orbiting the sun, to the relatively small, such as
the shock absorbers damping gravity-driven oscillations in a car. In SimMechanics, you
can add gravity to systems like these using three gravity models:

• Uniform gravity, as experienced by most earthbound systems. The force on each body
due to uniform gravity depends only on its mass. This force is the same everywhere in
space for a given body, though it can vary in time. You model uniform gravity using
the Mechanism Configuration block.

• Gravitational field, as experienced by the planets in the solar system. The force on
each body due to a gravitational field depends not only on its mass but also on its
inverse square distance to the field origin. You model a gravitational field using the
Gravitational Field block.

 Modeling Gravity

4-3

• Inverse-square law force pair, similar in nature to a gravitational field, but acting
exclusively between one pair of bodies. You model an inverse-square law force pair
using the Inverse Square Law Force block. You must specify the body masses
and force constants explicitly.

Gravitational Force Magnitude

The force of gravity is an inverse-square law force—that is, one that decays with the
square distance from the field origin to the target body. The magnitude of this force, Fg,
follow from Newton’s law of universal gravitation which, for two bodies of mass M and m
a distance R apart, states

F G
Mm

R
g = -

2

with G being the gravitational constant. This is the force that you model when you
represent gravity through Gravitational Field or Inverse Square Law Force blocks. If the
distance between source and target masses is constant, the gravitational force reduces to
a simpler form,

F mg
g

= -

with g being the nominal gravitational acceleration. Near the surface of the Earth,
at a distance equal to Earth’s radius from the gravitational field origin, the nominal
acceleration equals

g m s
GM

R
= ª

2

2
9 80665.

This is the gravitational force that you model when you represent gravity through
the Mechanism Configuration block. The figure shows how the magnitude of the
gravitational force (Fg) varies with distance (R) for a given body under uniform gravity, a
gravitational field, and an inverse-square law force pair.

4 Internal Mechanics, Actuation and Sensing

4-4

Force Position and Direction

In a physical system, the force due to a gravitational field acts at a body’s center of mass
—automatically computed during simulation—along the imaginary line connecting the
field origin to the center of mass. These are also the application point and direction of
gravity that the Gravitational Field block provides. See “SimMechanics Bodies” on page
2-2 for more information on how SimMechanics defines a body subsystem.

Far from the field origin, the field origin-center of mass line remains approximately
constant at small-to-moderate displacements, and the force of gravity behaves as if its
direction were fixed. This is the approximation used in the Mechanism Configuration
block. Gravity still acts at each body’s center of mass, but its direction is now fixed along
the gravity vector that you specify.

If you want to model the effects of gravity on a point other than a body’s center of mass,
you can add a frame at the desired location and apply a gravitational force directly at
that frame. You model the force using the Inverse Square Law Force block. This force
points along the imaginary line between the two body frames that the Inverse Square
Law Force block connects.

The table summarizes the application point and direction of gravity provided by the
different blocks.

Block Position Direction

Mechanism Configuration Center of Mass Specified gravity vector
Gravitational Field Center of Mass Field origin-center of mass

line
Inverse Square Law Force Connection frames Base-follower frame line

 Modeling Gravity

4-5

Gravitational Torques

A gravitational torque can arise in a large body immersed in a nonuniform gravitational
field. The lemon-shaped moon, with its near end perpetually facing Earth, is one
example. Being placed at different distances from Earth, the near and far elongated ends
experience dissimilar gravitational forces, resulting in a net gravitational torque if the
line between the two ends ever falls out of alignment with the center of the Earth.

You can model such torques in SimMechanics by modeling the different gravitational
forces acting on a body. You do this using the Inverse Square Law Force or Gravitational
Field block. If you use the Inverse Square Law Force block, you must create additional
frames in each body whose response to gravitational torque you want to model. You must
then apply a gravitational force to each frame explicitly. The figure shows an example.

Torque on the moon due to dissimilar gravitational forces at the elongated ends

4 Internal Mechanics, Actuation and Sensing

4-6

If you use the Gravitational Field block, you must split each body into discrete
sections and connect them through Weld Joint blocks. The Gravitational Field block
automatically applies a force at the center of mass of each section, approximating the
compound effect of the different gravitational forces on the body—which in this case is
treated as a rigid multibody system. The figure shows an example.

Torque on the moon due to dissimilar gravitational forces at the elongated ends

 Model Planetary Orbit Due to Gravity

4-7

Model Planetary Orbit Due to Gravity

In this section...

“Model Overview” on page 4-7
“Build Model” on page 4-9
“Configure Simulation Parameters” on page 4-14
“Simulate Model” on page 4-15
“Add Remaining Planets” on page 4-16

Model Overview

In this tutorial, you model planet orbit in our solar system due to gravity. The planets
are treated as spheres, each with three translational and zero rotational degrees of
freedom with respect to a fixed world frame. Cartesian Joint blocks provide these degrees
of freedom. Gravitational Field blocks generate the attractive forces that keep the
planets in orbit.

For simplicity, the tutorial assumes that each planet is at aphelion at simulation time
zero. Aphelion is the point of greatest distance from the sun. It corresponds to the
minimum orbital velocity of a given planet.

4 Internal Mechanics, Actuation and Sensing

4-8

Placing the planets simultaneously at aphelion while neglecting orbital parameters such
as inclination and longitude of ascension node causes them to align on a single axis. In
the tutorial, aphelion lies on the X axis at a distance Px from the sun. The planet velocity
at aphelion is orthogonal to the line joining the planet to the sun. It points along the Y
axis with magnitude Vy.

The procedure in this tutorial shows how you can model the gravitational interaction
between Earth and the sun. In this procedure, you add two Cartesian Joint blocks. One
block, connected between the Earth reference frame and the World frame, provides three
translational degrees of freedom to Earth. The other block, connected between the Sun
reference frame and the World frame, provides the same to the sun, allowing it too to
move under the gravitational pull of Earth. Planet spin is ignored.

Similarly, you add two Gravitational Field blocks to the model. One block, connected to
the sun reference frame, represents the gravitational field of the sun. This field exerts an
attractive pull on Earth, but it has no effect on the sun itself. To represent the attractive
pull of Earth on the sun, you connect the second Gravitational Field block to the Earth
reference frame.

When using the Gravitational Field block, you must set the Uniform Gravity
parameter of the Mechanism Configuration block to None. This step prevents conflicting
gravity sources in your model. If you forget to take this step, SimMechanics throws an
error and the model does not simulate.

The figure shows the key blocks in this model and their connections. Note that you must
add other blocks, such as Solver Configuration, for the model to simulate.

 Model Planetary Orbit Due to Gravity

4-9

Build Model

Start by modeling the gravitational interaction between the sun and the earth. This
model shows the approach to use when you add the remaining planets to the model.
Except where noted, the blocks you use are from the SimMechanics Second Generation
library.

Start Model

1 Start a new model.
2 Add these blocks to the model.

Library Block

Utilities Mechanism Configuration

Frames and Transforms World Frame

Simscape Utilities Solver Configuration

3 Connect the blocks as shown.

4 Internal Mechanics, Actuation and Sensing

4-10

4 In the Mechanism Configuration block dialog box, set Uniform Gravity to None.
This change enables you to specify gravity using a Gravitational Field block instead.

Add Sun

1 Add these blocks to the model. The blocks represent the sun: its solid properties,
its gravitational pull on other bodies, and its degrees of freedom with respect to the
(fixed) World frame.

Library Block

Body Elements Solid

Forces and Torques Gravitational Field

Joints Cartesian Joint

2 Connect the blocks as shown. Note that each line joining two or more frame ports
represents a single frame. The R, B, and F port frames of the Sun, Sun Gravity, and
Sun Translational DOFs blocks are coincident with each other.

 Model Planetary Orbit Due to Gravity

4-11

3 In the Sun block dialog box, specify these parameters. These variables are the
solid properties of the sun. You define their numerical values later in the model
workspace.

Parameter Select or Enter

Geometry > Shape Sphere

Geometry > Radius Sun.R

Inertia > Based on Mass

Inertia > Mass Sun.M

Graphic > Visual Properties > Color Sun.RGB

4 In the Sun Gravity block dialog box, for Mass, enter Sun.M. The block uses this mass
to calculate the gravitational force on the planets as a function of distance.

In the previous two steps, you specified the sun mass in two blocks, Sun and Sun
Gravity, using a single variable, Sun.M. This approach ensures the two blocks, both
of which represent the sun, use the same mass.

4 Internal Mechanics, Actuation and Sensing

4-12

Add Earth

1 Add these blocks to the model. The blocks represent Earth: its solid properties, its
gravitational pull on other bodies, and its degrees of freedom with respect to the
(fixed) World frame.

Library Block

Body Elements Solid

Forces and Torques Gravitational Field

Joints Cartesian Joint

2 Connect the blocks as shown. The R, B, and F port frames of the Earth, Earth
Gravity, and Earth Translational DOFs blocks are coincident with each other.

3 In the Earth block dialog box, specify these parameters. These variables are the solid
properties of Earth. You define their numerical values later in the model workspace.

 Model Planetary Orbit Due to Gravity

4-13

Parameter Select or Enter

Geometry > Shape Sphere

Geometry > Radius Earth.R

Inertia > Based on Mass

Inertia > Mass Earth.M

Graphic > Visual Properties > Color Earth.RGB

4 In the Earth Gravity block dialog box, for Mass, enter Earth.M. This variable is the
earth mass you specified in the Earth block. The block uses this mass to calculate the
gravitational force as a function of distance.

5 In the Earth Translational DOFs block dialog box, specify these parameters. The
state target variables set the initial position and velocity of Earth with respect to the
initial position of the sun (originally coincident with the fixed World frame).

Parameter Select or Enter

X Prismatic Primitive (Px) > State
Targets

a Select the Specify Position check
box.

b In Value, enter Earth.Px.
c Select the Specify Velocity check

box.
d In Value, enter Earth.Vx.

Y Prismatic Primitive (Py) > Specify
Position Target

a Select the Specify Position check
box.

b In Value, enter Earth.Py.
c Select the Specify Velocity check

box.
d In Value, enter Earth.Vy.

Define Model Variables

1 In the Simulink editor, select Tools > Model Explorer.
2 In the Model Hierarchy pane of Model Explorer, expand the node for your model and

select Model Workspace.
3 In the Model Workspace pane, in Data Source, select MATLAB Code.

4 Internal Mechanics, Actuation and Sensing

4-14

4 In the MATLAB Code field, enter:

%% Sun Parameters

% Scale sun size for visualization purposes

SunScaling = 1e2;

% Specify the solid properties of the sun

Sun.M = 1.99e30;

Sun.R = 6.96e8*SunScaling;

Sun.RGB = [1, 0.6, 0];

%% Earth Parameters

% Scale Earth size for visualization purposes

TerrestrialPlanetScaling = 1.2e3; % Scale the size of Earth

% Specify the solid properties of Earth

Earth.M = 5.97e24;

Earth.R = 6.05e6*TerrestrialPlanetScaling;

Earth.RGB = [0.5, 0.8, 1];

% Specify initial position and velocity of Earth

Earth.Px = 1.52e11;

Earth.Py = 0;

Earth.Vx = 0;

Earth.Vy = 2.93e4;

The scaling factors impact visualization only. They have no impact on model
dynamics. These factors become more important as you add planets to the solar
system model. As the distances between the sun and the outer planets increase, the
apparent sizes of these bodies decrease, sometimes to just a few pixels. The scaling
factors artificially increase the apparent sizes of the sun and the planets so that they
remain visible in Mechanics Explorer.

5 Click Reinitialize from Source.

Configure Simulation Parameters

Large gravitational systems such as the Earth-sun pair typically have long periods
of revolution. To capture multiple Earth revolutions during simulation, increase the
simulation stop time to several years. To ensure an adequate balance between simulation
speed and accuracy, adjust the solver step sizes.

1 In the Simulink editor, select Simulation > Model Configuration Parameters.

 Model Planetary Orbit Due to Gravity

4-15

2 In Stop time, enter 10*365*24*60*60. This value equals 10 years in seconds. It
allows simulation to run for 10 consecutive Earth revolutions about the sun.

3 In Max step size, enter 24*60*60. This value equals one day in seconds.

Simulate Model

Update the block diagram, e.g., by pressing Ctrl+D with the model window active.
Mechanics Explorer opens with a static 3-D display of the model in its initial state.
Adjust the viewpoint and zoom level to optimize visualization on your screen.

Run the simulation, e.g., by pressing Ctrl+T. Mechanics Explorer plays a physics-based
animation of the solar system. At the default value of the base playback speed, planet
motion is hardly noticeable. Increase this value to watch Earth complete one revolution
about the sun in 10 seconds:

1 In Mechanics Explorer, select Tools > Animation Settings.
2 In Base(1X) Playback Speed, enter 3153600. This number equals one 10th of a

year in seconds.
3 Click Pause and then Play. Mechanics Explorer applies the previous changes. You

can now watch Earth revolve about the sun once every ten seconds.

4 Internal Mechanics, Actuation and Sensing

4-16

Add Remaining Planets

Complete the solar system model by adding the remaining planets. Follow the approach
that you used to model the Earth-sun system.

The table shows the relevant parameters for each planet. To better visualize the planets,
consider scaling the radius parameters. For example, you can multiply the terrestrial
planet radii by a common scaling factor (e.g., TerrestrialPlanetScaling), and the
gas giant planets by another common scaling factor (e.g., GasGiantScaling).

Planet Radius (m) Mass (kg) X Position
Target (m)

X Velocity
Target (m/
s)

Y Position
Target (m)

Y Velocity
Target (m/s)

Mercury 2.44e6 3.30e23 6.98e10 0 0 3.89e4
Venus 6.05e6 4.87e24 1.09e11 0 0 3.48e4
Mars 3.39e6 6.42e23 2.49e11 0 0 2.2e4
Jupiter 6.99e7 1.90e27 8.17e11 0 0 1.24e4
Saturn 5.82e7 5.68e26 1.51e12 0 0 9.09e3
Uranus 2.54e7 8.68e25 3.00e12 0 0 6.49e3
Neptune 2.46e7 1.02e26 4.55e12 0 0 5.37e3

If you struggle with the remaining planets, you can open a completed model of the solar
system. At the MATLAB command prompt, enter:

• smdoc_solar_system_wfield_a — Model of the inner solar system. This model
includes the sun and terrestrial planets only.

• smdoc_solar_system_wfield_b — Model of the complete solar system. This model
adds to the previous model the gas giant planets.

These models include Rigid Transform blocks to account for orbit inclination and
longitude of ascension node.

Note that gravity is an inverse-square law force. That is, the force magnitude decays
with the square distance between a body and the field source mass. As such, you can
model the gravitational force between two bodies using the Inverse Square Law Force
block. However, this block applies a force only between its two port frames. Use this
approach to neglect secondary gravitational interactions, e.g., if orbital perturbations due
to planet-planet interactions are irrelevant to your application.

 Model Planetary Orbit Due to Gravity

4-17

Open these models to see how to model the solar system using the Inverse Square Law
Force block instead:

• smdoc_solar_system_wforce_a — Model of the solar system with terrestrial
planets.

• smdoc_solar_system_wforce_b — Model of the solar system with terrestrial and
gas-giant planets.

These models account only for the gravitational interactions between sun-planet pairs.

4 Internal Mechanics, Actuation and Sensing

4-18

Joint Actuation

In this section...

“Actuation Modes” on page 4-18
“Motion Input” on page 4-21
“Input Handling” on page 4-23
“Assembly and Simulation” on page 4-24

Actuation Modes

Joint blocks provide two actuation parameters. These parameters, Force/Torque and
Motion, govern how the joint behaves during simulation. Depending on the parameter
settings you select, a joint block can accept either actuation parameter as input or
automatically compute its value during simulation.

An additional setting (None) allows you to set actuation force/torque directly to zero. The
joint primitive is free to move during simulation, but it has no actuator input. Motion is
due indirectly to forces and torques acting elsewhere in the model, or directly to velocity
state targets.

Like all joint block parameters, you select the actuation parameter settings for each joint
primitive separately. Different joint primitives in the same block need not share the
same actuation settings. Using a Pin Slot Joint block, for example, you can provide
motion input and have actuation torque automatically computed for the Z Revolute
Primitive (Rz), while having motion automatically computed with no actuation force for
the X Prismatic Primitive (Px).

 Joint Actuation

4-19

By combining different Force/Torque and Motion actuation settings, you can achieve
different joint actuation modes. Forward dynamics and inverse dynamics modes are two
common examples. You actuate a joint primitive in forward dynamics mode by providing
actuation force/torque as input while having motion automatically computed. Conversely,
you actuate a joint primitive in inverse dynamics mode by providing motion as input
while having actuation force/torque automatically computed.

Other joint actuation modes, including fully computed and fully specified modes, are
possible. The table summarizes the different actuation modes that you can obtain by
manipulating the actuation parameter settings.

4 Internal Mechanics, Actuation and Sensing

4-20

Joint Actuation Modes

More generally, thinking of joint actuation in terms of the specified or calculated
quantities—i.e., force/torque and motion—provides a more practical modeling approach.
You may not always know the appropriate mode for a joint but, having planned the
model beforehand, you should always know the answers to two questions:

• Is the joint primitive mechanically actuated?
• Is the desired trajectory of the joint primitive known?

By selecting the joint actuation settings based on the answers to these questions, you can
ensure that each joint is properly set for your application. The figure shows the proper
settings depending on your answers.

 Joint Actuation

4-21

Selecting Joint Primitive Actuation Settings

Motion Input

The motion input of a joint primitive is a timeseries object specifying that primitive’s
trajectory. For a prismatic primitive, that trajectory is the position coordinate along the
primitive axis, given as a function of time. The coordinate provides the position of the
follower frame origin with respect to the base frame origin. The primitive axis is resolved
in the base frame.

For a revolute primitive, the trajectory is the angle about the primitive axis, given as a
function of time. This angle provides the rotation of the follower frame with respect to the
base frame about the primitive axis. The axis is resolved in the base frame.

Spherical joint primitives provide no motion actuation options. You can specify actuation
torque for these primitives, but you cannot prescribe their trajectories. Those trajectories
are always automatically computed from the model dynamics during simulation.

4 Internal Mechanics, Actuation and Sensing

4-22

Zero Motion Prescription

Unlike Actuation > Force/Torque, the Actuation > Motion parameter provides no
zero input option, corresponding to a fixed joint primitive during simulation. You can,
however, prescribe zero motion the same way you prescribe all other types of motion:
using Simscape and Simulink blocks.

In SimMechanics, motion input signals are position-centric. You specify the joint
primitive position and, if filtered to the second-order, the Simulink-PS Converter
block smooths the signal while providing its two time-derivatives automatically. This
behavior makes zero motion prescription straightforward: just provide a constant signal
to the motion actuation input port of the joint primitive and simulate.

The figure shows an example of zero-motion prescription. A Simulink Constant block
provides a constant position value. A Simulink-PS Converter block converts this
Simulink signal into a Simscape signal compatible with the motion actuation input port
of the Base-Crank Revolute Joint block. Assuming that assembly and simulation are
successful, this joint will maintain a fixed angle of 30 degrees, corresponding to the value
set in the Simulink Constant block and the units set in the Simulink-PS Converter block.

 Joint Actuation

4-23

Input Handling

When prescribing a joint primitive trajectory, it is practical to specify a single input, the
position, and filter that input using a Simulink-PS Converter block. This filter, which
must of second-order, automatically provides the two time derivatives of the motion
input. Because it also smooths the input signal, the filter can help prevent simulation
issues due to sudden changes or discontinuities, such as those present when using a
Simulink Step block.

Filtering smooths the input signal over a time scale of the order of the input filtering
time constant. The larger the time constant, the greater the signal smoothing, and the
more distorted the signal tends to become. The smaller the time constant, the closer the
filtered signal is to the input signal, but also the greater the model stiffness—and, hence,
the slower the simulation.

As a guideline, the input filtering time constant should be only as small as the smallest
relevant time scale in a model. By default, its value is 0.001 s. While appropriate

4 Internal Mechanics, Actuation and Sensing

4-24

for many models, this value is often too small for SimMechanics models. For faster
simulation, start with a value of 0.01 s. Decrease this value for greater accuracy.

If you know the two time derivatives of the motion input signal, you can specify
them directly. This approach is most convenient for simple trajectories with simple
derivatives. You must, however, ensure that the two derivative signals are compatible
with the position signal. If they are not, even when simulation proceeds, results may be
inaccurate.

Assembly and Simulation

SimMechanics joints with motion inputs start simulation (Ctrl+T) at the initial position
dictated by the input signal. This initial position may differ from the assembled state,
which is governed by an assembly algorithm optimized to meet the joint state targets, if
any. Even in the absence of joint state targets, the assembled state may differ from that
at simulation time zero.

Note: You obtain the assembled state each time you update the block diagram, e.g.,
by pressing Ctrl+D. You obtain the initial simulation state each time you run the
simulation, e.g., by pressing Ctrl+T, and pausing at time zero.

Due to the discrepancy between the two states, Model Report provides accurate initial
state data only for models lacking motion inputs. For models possessing motion inputs,
that data is accurate only when the initial position prescribed by the motion input signal
exactly matches the initial position prescribed in the joint state targets.

Similarly, Mechanics Explorer displays the initial joint states accurately only for models
lacking motion inputs. As it transitions from the assembled state to the initial simulation
state, Mechanics Explorer may show a sudden jump if a model contains motion inputs
that are incompatible with the joint state targets. You can eliminate the sudden change
by making the initial position prescribed by joint motion inputs equal to the initial
position prescribed by the joint state targets.

 Joint Actuation

4-25

Related Examples
• “Prescribe Joint Motion in Planar Manipulator Model” on page 4-108
• “Prescribe Joint Motion in Four-Bar Model” on page 4-103
• “Specify Motion Input Derivatives” on page 4-26

4 Internal Mechanics, Actuation and Sensing

4-26

Specify Motion Input Derivatives

If filtering the input signal using the Simulink-PS Converter block, you need only to
provide the position signal. The block automatically computes the derivatives. You must,
however, select second-order filtering in the block dialog box:

1 Open the dialog box of the Simulink-PS Converter block and click Input Handling.
2 In Filtering and derivatives, select Filter input.
3 In Input filtering order, select Second-order filtering.
4 In Input filtering time constant (in seconds), enter the characteristic time over

which filter smooths the signal. A good starting value is 0.01 seconds.

If providing the input derivatives directly, you must first compute those derivatives.
Then, using the Simulink-PS Converter block, you can provide them to the target joint
block. To specify the input derivatives directly:

1 Open the Simulink-PS Converter block receiving the input signal and click the
Input Handling tab.

2 In Filtering and derivatives, select Provide input derivative(s).
3 To specify both derivatives, in Input derivatives, select Provide first and

second derivatives.

The block displays two additional physical signal ports, one for each derivative.

Related Examples
• “Prescribe Joint Motion in Planar Manipulator Model” on page 4-108
• “Prescribe Joint Motion in Four-Bar Model” on page 4-103

More About
• “Joint Actuation” on page 4-18

 Joint Actuation Limitations

4-27

Joint Actuation Limitations

In this section...

“Closed Loop Restriction” on page 4-27
“Motion Actuation Not Available in Spherical Primitives” on page 4-27
“Redundant Actuation Mode Not Supported” on page 4-27
“Model Report and Mechanics Explorer Restrictions” on page 4-28
“Motion-Controlled DOF Restriction” on page 4-28

Closed Loop Restriction

Each closed kinematic loop must contain at least one joint block without motion inputs or
computed actuation force/torque. This condition applies even if one of the joints acts as a
virtual joint, e.g., the bushing joint in the “Prescribe Joint Motion in Planar Manipulator
Model” on page 4-108 example. The joint without motion inputs or automatically
computed actuation forces/torques can still accept actuation forces/torques from input.

In models not meeting this condition, you can replace a rigid connection line between
two Solid blocks with a Weld Joint block. Since the Weld Joint block represents a rigid
connection, this approach leaves the model dynamics unchanged. The advantage of this
approach lies in its ability to satisfy the SimMechanics closed-loop requirement without
altering model dynamics.

Motion Actuation Not Available in Spherical Primitives

Spherical joint primitives provide no motion actuation parameters. You can prescribe
the actuation torque acting on the spherical primitive, but not its desired trajectory. For
models requiring motion prescription for three concurrent rotational degrees of freedom,
use joint blocks with three revolute primitives instead. These blocks include Gimbal
Joint, Bearing Joint, and Bushing Joint.

Redundant Actuation Mode Not Supported

Redundant actuation, in which the end effector trajectory of a high-degree-of-freedom
linkage is prescribed, is not allowed. Such linkages possess more degrees of freedom than
are necessary to uniquely position the end effector and, as such, have no single solution.

4 Internal Mechanics, Actuation and Sensing

4-28

Models that have more degrees of freedom with automatically computed actuation forces/
torques than with prescribed motion inputs cause simulation errors.

Model Report and Mechanics Explorer Restrictions

In models with motion input, the assembled state achieved by updating the block
diagram (Ctrl+D) does not generally match the initial simulation state at time zero (Ctrl
+T). This discrepancy is visible in Mechanics Explorer, where it can cause a sudden state
change at time zero when simulating a model after updating it. It is also reflected in
Model Report, whose initial state data does not generally apply to the simulation time
zero when a model has motion inputs.

Motion-Controlled DOF Restriction

The number of degrees of freedom with prescribed trajectories must equal the number of
degrees of freedom with automatically computed force or torque. In models not meeting
this condition, simulation fails with an error.

Related Examples
• “Prescribe Joint Motion in Planar Manipulator Model” on page 4-108
• “Prescribe Joint Motion in Four-Bar Model” on page 4-103
• “Specify Motion Input Derivatives” on page 4-26

More About
• “Joint Actuation” on page 4-18

 Actuating and Sensing Using Physical Signals

4-29

Actuating and Sensing Using Physical Signals

In this section...

“Exposing Physical Signal Ports” on page 4-29
“Providing Actuation Signals” on page 4-29
“Extracting Sensing Signals” on page 4-30

Some SimMechanics blocks provide physical signal ports for actuation input or sensing
output. These ports accept or output only Simscape physical signals. If you wish to
connect these ports to Simulink blocks, you must use the Simscape converter blocks. The
table summarizes the converter blocks that Simscape provides. You can find both blocks
in the Simscape Utilities library.

Block Summary

PS-Simulink Converter Convert Simscape physical signal into
Simulink signal

Simulink-PS Converter Convert Simulink signal into Simscape
physical signal

Exposing Physical Signal Ports

In SimMechanics, most physical signal ports are hidden by default. To expose them, you
must select an actuation input or sensing output from the block dialog box. Blocks that
provide physical signal ports include certain Forces and Torques blocks as well as Joint
blocks. Each port has a unique label that identifies the actuation/sensing parameter. For
the ports that a block provides, see the reference page for that block.

Providing Actuation Signals

To provide an actuation signal based on Simulink blocks, you use the Simulink-PS
Converter block:

1 Specify the desired actuation signal using Simulink blocks.
2 Connect the Simulink signal to the input port of a Simulink-PS Converter block.
3 Connect the output port of the Simulink-PS Converter block to the input port of the

SimMechanics block that you want to provide the actuation signal to.

4 Internal Mechanics, Actuation and Sensing

4-30

In the figure, the connection line that connects to the input port of the Simulink-PS
Converter block represents the original Simulink signal. The connection line that
connects to the output port of the same block represents the converted physical signal.
This is the signal that you must connect to the actuation ports in SimMechanics blocks.

Extracting Sensing Signals

To connect the sensing signal of a SimMechanics block to a Simulink block, you use the
PS-Simulink Converter block:

1 Connect the SimMechanics sensing port to the input port of a PS-Simulink
Converter block.

2 Connect the output port of the PS-Simulink Converter block to the Simulink block of
your choice.

The figure shows how you can connect a SimMechanics sensing signal to a Simulink
Scope block.

 Actuating and Sensing Using Physical Signals

4-31

4 Internal Mechanics, Actuation and Sensing

4-32

Forces and Torques Between Arbitrary Bodies
In this section...

“Force and Torque Blocks” on page 4-32
“Actuating Rigid Bodies” on page 4-32

Force and Torque Blocks

You can apply different forces and torques to a model. The table summarizes the
different forces and torques that you can represent using SimMechanics blocks. For
detailed information about these blocks, see the block reference pages.

Block Description

External Force and Torque General force and torque acting on a frame
origin due to an external source. You
specify the force magnitude directly using a
physical signal.

Gravitational Field Gravitational field of a point mass. The
field exerts on every rigid body a force
proportional to the distance between
the rigid-body center of mass and the
Gravitational Field port frame.

Internal Force General force between two frames. You
specify the force magnitude directly using a
physical signal.

Inverse Square Law Force Force with an inverse dependence on
the square distance between two frame
origins. Examples include gravitational and
electrostatic forces.

Spring and Damper Force Force with a linear dependence on the
relative position and velocity between two
frame origins.

Actuating Rigid Bodies

You can actuate a rigid body directly using blocks from the Forces and Torques library.
Use the External Force and Torque block to represent an actuation input that arises

 Forces and Torques Between Arbitrary Bodies

4-33

outside your modeled system. Use the remaining blocks to represent forces that are
internal to your system.

The figure illustrates external and internal forces acting on a mechanical system. An
external force provides the actuation input to the system. This can be a constant or a
general time-dependent input. A spring and damper force acting between the two bodies
in the system accounts for energy storage and dissipation. You represent the actuation
input using the External Force and Torque block. You represent the internal spring and
damper force using the Spring and Damper Force block.

The Forces and Torques blocks contain frame ports. These ports identify the rigid body
frames the forces/torques act on. If the block represents an internal force, the block
contains two frame ports. Connect these ports to the two rigid bodies the force/torque acts
on. If the block represents an external force or torque, the block contains one frame port.
Connect this port to the rigid body frame the external force or torque acts on.

The frame origin identifies the point of application for a force or torque. The frame axes
identify the directions of the X, Y, and Z force/torque vector components that you specify.
Changing the frame position changes also the force/torque application point. Likewise,
changing the frame orientation changes also the force/torque direction.

The figure shows three external forces that you can apply to the rocker link of a four-bar
mechanism—F1, F2, and F3. Forces F1 and F3 act at the ends of the link, while force F2
acts at its mass center.

4 Internal Mechanics, Actuation and Sensing

4-34

To represent one of these forces in a SimMechanics model, you first define the frame to
apply that force to. Example “Represent Binary Link Frame Tree” on page 1-33 shows
you how to do this. Then, in the block diagram for your model, connect the frame port
of an External Force and Torque block to the frame entity that represents that frame—
frame port, line, or node. For more information, see “Representing Frames” on page 1-6.

Finally, in the block dialog box, select the force components that you want to specify.
For example, to specify a force acting along the -Y axis of the frame it connects to, select
Force > Force (Y). Then, use the physical signal port that the block exposes to input the
value of that force component. That value is negative for a force acting along the -Y axis.

The figure shows the modified block diagram of a four-bar model that is present in your
SimMechanics installation. You can open the original model by typing sm_four_bar at
the MATLAB command line.

 Forces and Torques Between Arbitrary Bodies

4-35

The rectangular frame in the image highlights the blocks that you can use to apply an
external force. The frame port that the External Force and Torque block connects to
represents the binary link mass center. The block diagram of the binary link subsystem
provides this frame. The figure shows the block diagram.

4 Internal Mechanics, Actuation and Sensing

4-36

In the External Force and Torque block, physical signal port fy identifies the force
component that the block represents—in this case, a force in the Y direction of the frame
that the block connects to.

Related Examples
• “Actuate Joint in Four-Bar Model” on page 4-71

More About
• “Joint Actuation” on page 4-18
• “Actuating and Sensing Using Physical Signals” on page 4-29
• “Representing Frames” on page 1-6

 Sensing

4-37

Sensing

In this section...

“Sensing Overview” on page 4-37
“Variables You Can Sense” on page 4-38
“Blocks with Sensing Capability” on page 4-38
“Sensing Output Format” on page 4-38

Sensing Overview

Sensing enables you to perform analytical tasks on a model. For example, you can
perform inverse dynamic analysis on a robotic manipulator model. By prescribing the
end-effector trajectory and sensing the joint actuation forces and torques, you can obtain
the time-varying profile of each joint actuation input.

The variables you prescribe, the model inputs, and those you sense, the model outputs,
determine which types of analysis you can perform. By changing the model inputs
and outputs, you can perform numerous other analysis types. For example, to perform
forward kinematic analysis on the robotic manipulator model, you can prescribe the
manipulator joint trajectories and sense the resulting end-effector trajectory.

4 Internal Mechanics, Actuation and Sensing

4-38

Variables You Can Sense

To support various analytical tasks, SimMechanics software provides a wide range of
variables that you can sense. Each variable belongs to either of two categories:

• Motion variables — Linear and angular position, velocity, and acceleration. Linear
variables are available in different coordinate systems, including Cartesian, spherical,
and cylindrical. Angular variables are available in different formats, including
quaternion, axis-angle, and transform matrix.

• Force and torque variables — Actuation, constraint, and total forces and torques
acting at a joint, as well as certain forces and torques acting outside of a joint.

Blocks with Sensing Capability

The entire sensing capability spans multiple SimMechanics blocks. Two types of blocks
provide motion sensing:

• Joint blocks — Motion sensing between the base and follower port frames of a joint
block. Variables that you can sense are organized by joint primitive (prismatic,
revolute, or spherical).

• Transform Sensor block — Motion sensing between any two frames in a model. This
block provides the most comprehensive motion sensing capability in SimMechanics.

Two types of blocks provide force and torque sensing:

• Joint blocks — Actuation, constraint, and total force and torque sensing between the
base and follower port frames. Actuation force and torque sensing is arranged by joint
primitive.

• Constraint blocks — Constraint force and torque between the base and follower port
frames.

• Certain Forces and Torques blocks — Total force the block exerts between the base
and follower port frames. Only certain Forces and Torques blocks provide this type of
sensing. Blocks that do include Spring and Damper Force and Inverse Square
Law Force.

Sensing Output Format

Each sensing output is in a physical signal format. You can convert physical signals into
Simulink signals using Simscape converter blocks, e.g., for plotting purposes using the

 Sensing

4-39

Scope block. For information on how to use physical signals in SimMechanics models,
see “Actuating and Sensing Using Physical Signals” on page 4-29.

4 Internal Mechanics, Actuation and Sensing

4-40

Force and Torque Sensing

In this section...

“Blocks with Force and Torque Sensing” on page 4-40
“Joint Forces and Torques You can Sense” on page 4-41
“Force and Torque Measurement Direction” on page 4-43

Blocks with Force and Torque Sensing

Blocks with force and torque sensing appear in two SimMechanics libraries:

• Forces and Torques — Sense the magnitude of certain forces not explicitly provided by
input. Blocks with force sensing include Inverse Square Law Force and Spring
and Damper Force. Each block can sense only the magnitude of its own force.

• Joints — Sense various forces and torques acting directly at a joint. All joint blocks
provide force and torque sensing. However, the specific force and torque types that
you can sense vary from joint to joint. Force and torque sensing is available strictly
between the rigid bodies the joint connects.

 Force and Torque Sensing

4-41

Force and Torque Sensing in SimMechanics

Joint Forces and Torques You can Sense

Forces and torques that you can sense at a joint fall into two categories:

• Joint primitive forces and torques. Each such force or torque is individually computed
for a given joint primitive. Joint actuator forces and torques belong to this category.

• Composite forces and torques. Each such force or torque is computed in aggregate for
an entire joint. Constraint and total forces and torques belong to this category.

The table summarizes the different joint forces and torques.

Force/Torque Type Acts On Measures

Actuator Individual joint primitives Force or torque driving an
individual joint primitive.
The sensed force or torque
can be provided by input

4 Internal Mechanics, Actuation and Sensing

4-42

Force/Torque Type Acts On Measures
or it can be automatically
computed based on joint
motion inputs in a model.

Constraint Entire joints Aggregate constraint force
or torque opposing motion
normal to the joint degrees
of freedom. By definition,
these forces and torques
act orthogonally to the joint
primitive axes.

Total Entire joints Net sum of all forces or
torques acting between the
joint port frames. These
include actuator, internal,
and constraint forces and
torques.

The figure shows a basic example of these forces acting on a crank-slider piston.

In the figure:

• FA is the actuator force, which drives the piston toward the crank link.
• FI is the internal spring and damper force, which resists motion of the piston with

respect to the chamber.
• FC is the constraint force, which opposes the effect of gravity on the piston, preventing

it from falling.

 Force and Torque Sensing

4-43

The total force equals the net sum of FA, FI, and FC.

Force and Torque Measurement Direction

In accordance with Newton’s third law of motion, a force or torque acting between two
joint port frames accompanies an equal and opposite force or torque. If the base port
frame of a Prismatic Joint block exerts a force on the follower port frame, then the
follower port frame exerts an equal force on the base frame. When sensing composite
forces and torques in joint blocks, you can specify which of the two to sense:

• Follower on base — Sense the force or torque that the follower port frame exerts on
the base port frame.

• Base on follower — Sense the force or torque that the base port frame exerts on the
follower port frame.

The figure shows the effect of reversing the measurement direction. Reversing this
direction changes the measurement sign.

4 Internal Mechanics, Actuation and Sensing

4-44

Motion Sensing

In this section...

“Sensing Spatial Relationship Between Joint Frames” on page 4-44
“Sensing Spatial Relationship Between Arbitrary Frames” on page 4-46

In SimMechanics, you can sense the spatial relationship between two frames using two
types of blocks:

• Transform Sensor — Sense the spatial relationship between any two frames in a
model. Parameters that you can sense with this block include position, velocity, and
acceleration of the linear and angular types. This block provides the most extensive
motion sensing capability in the SimMechanics libraries.

• Joint blocks — Sense the spatial relationship between the base and follower frames of
a Joint block. Parameters that you can sense with a Joint block include the position
and its first two time derivatives (velocity and acceleration) for each joint primitive.

These blocks output a physical signal for each measurement that you specify. You can
use the sensing output of these blocks for analysis or as input to a control system in a
model.

Sensing Spatial Relationship Between Joint Frames

To sense the spatial relationship between the base and follower frames of a Joint block,
you can use the Joint block itself. For each joint primitive, the dialog box provides a
Sensing menu with basic parameters that you can measure. These parameters include
the position, velocity, and acceleration of the follower frame with respect to the base
frame. If the sensing menu of the dialog box does not provide the parameters that you
wish to sense, use the Transform Sensor block instead. See “Sensing Spatial Relationship
Between Arbitrary Frames” on page 4-46.

The sensing capability of a joint block is limited to the base and follower frames of that
joint block. Every measurement provides the value of a parameter for the joint follower
frame with respect to the joint base frame. If sensing the spatial relationship with a
spherical joint primitive, you can also select the frame to resolve the measurement in. To
sense the spatial relationship between any other two frames, use the Transform Sensor
block instead.

If the joint primitive is of the revolute or spherical type, the parameters correspond to
the rotation angle, angular velocity, and angular acceleration, respectively. If the joint

 Motion Sensing

4-45

primitive is of the prismatic type, the parameters correspond to the offset distance, linear
velocity, and linear acceleration, respectively.

Regardless of joint primitive type, each parameter that you select applies only to the joint
primitive it belongs to. For example, selecting Position in the Z Revolute Primitive
(Rz) > Sensing menu exposes a physical signal port that outputs the rotation angle of
the follower frame with respect to the base frame about the base frame Z axis.

The table lists the port label for each parameter that you can sense using a joint block.
The first column of the table identifies the parameters that you can select. The remaining
three columns identify the port labels for the three joint primitive menus that the dialog
box can contain: Spherical, Revolute, and Prismatic.

Note: For parameter descriptions, see the reference pages for Spherical Joint,
Revolute Joint, and Prismatic Joint blocks.

Parameter Spherical Revolute Prismatic

Position Q q p
Velocity w w v
Velocity (X/Y/Z) wx/wy/wz N/A N/A
Acceleration b b a
Acceleration (X/Y/Z) bx/by/bz N/A N/A

A joint block can contain multiple revolute and prismatic joint primitives. For blocks with
multiple primitives of the same type, the port labels include an extra letter identifying
the joint primitive axis. For example, the Position port label for the Z prismatic
primitive of a Cartesian Joint block is pz.

Select Joint Parameters To Sense

To select the spatial relationship parameters that you wish to sense:

1 Open the dialog box for the joint block to sense the spatial relationship across.

2 In the Sensing menu of the block dialog box, select the parameters to sense.

The block exposes one physical signal port for each parameter that you select. The label
of each port identifies the parameter that port outputs.

4 Internal Mechanics, Actuation and Sensing

4-46

Sensing Spatial Relationship Between Arbitrary Frames

To sense the spatial relationship between two arbitrary frames in a model, you use the
Transform Sensor block. The dialog box of this block provides a set of menus that you can
use to select the parameters to sense. These parameters include position, velocity, and
acceleration of the linear and angular types.

Every measurement provides the value of a parameter for the follower frame with
respect to the base frame, resolved in the measurement frame that you choose. You
can connect the base and follower frame ports of the Transform Sensor block to any
two frames in a model. To measure a parameter for a different frame, connect the
follower frame port to the frame line or port that identifies that frame. Likewise, to
measure a parameter for the same frame but with respect to a different frame, connect
the base frame port to the frame line or port that identifies that frame. Finally, to
resolve a measurement in a different frame, select a different measurement frame in the
block dialog box. For more information about measurement frames, see “Measurement
Frames” on page 4-62. For more information about frame lines and ports, see
“Representing Frames” on page 1-6.

Selecting a parameter from the block dialog box exposes the corresponding physical
signal port in the block. Use this port to output the measurement for that parameter. To
identify the port associated with each parameter, each port uses a unique label.

The table lists the port labels for each angular parameter that you can sense. The first
column of the table identifies the parameters that you can select. The remaining three
columns identify the port labels for the three angular parameter menus in the dialog box:
Rotation, Angular Velocity, and Angular Acceleration. Certain parameters belong
to one menu but not to others. N/A identifies the parameters that do not belong to a given
menu—e.g. Angle, which is absent from the Angular Velocity.

Note: For parameter descriptions, see the Transform Sensor reference page.

Parameter Rotation Angular Velocity Angular Acceleration

Angle q N/A N/A
Axis axs N/A N/A
Quaternion Q Qd Qdd
Transform R Rd Rdd

 Motion Sensing

4-47

Parameter Rotation Angular Velocity Angular Acceleration

Omega X/Omega Y/
Omega Z

N/A wx/wy/wz N/A

Alpha X/Alpha Y/
Alpha Z

N/A N/A bx/by/bz

The table lists the port labels for each linear parameter that you can sense. As in the
previous table, the first column identifies the parameters that you can select. The
remaining three columns identify the port labels for the three linear parameter menus in
the dialog box: Translation, Velocity, and Acceleration.

Parameter Rotation Port Angular Velocity Port Angular Acceleration
Port

X/Y/Z x/y/z vx/vy/vz ax/ay/az
Radius rad vrad arad
Azimuth azm vazm aazm
Distance dst vdst adst
Inclination inc vinc ainc

Select Transform Sensor Parameters To Sense

To select the spatial relationship parameters that you wish to sense:

1 Open the Transform Sensor dialog box.
2 Expand the menu for the parameter group that parameter belongs to.

E.g. Rotation for parameter Angle.
3 Select the check box for that parameter.

The block exposes one physical signal port for each parameter that you select. The label
of each port identifies the parameter that port outputs.

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Actuate Joint in Four-Bar Model” on page 4-71

4 Internal Mechanics, Actuation and Sensing

4-48

More About
• “Rotational Measurements” on page 4-49
• “Translational Measurements” on page 4-54
• “Measurement Frames” on page 4-62

 Rotational Measurements

4-49

Rotational Measurements

In this section...

“Rotation Sensing Overview” on page 4-49
“Measuring Rotation” on page 4-49
“Axis-Angle Measurements” on page 4-49
“Quaternion Measurements” on page 4-50
“Transform Measurements” on page 4-52

Rotation Sensing Overview

You can measure frame rotation in different formats. These include axis-angle,
quaternion, and transform. The different formats are available through the Transform
Sensor block and, to a limited extent, in joint blocks 1. The choice of measurement
format depends on the model. Select the format that is most convenient for the
application.

Measuring Rotation

Rotation is a relative quantity. The rotation of one frame is meaningful only with respect
to another frame. As such, blocks with rotation sensing capability require two frames
to make a measurement: measured and reference frames. In these blocks, the follower
frame port identifies the measured frame; the base frame port identifies the reference
frame of the measurement.

SimMechanics defines the rotation formats according to standard conventions. In some
cases, more than one convention exists. This is the case, for example, of the quaternion.
To properly interpret rotation measurements, review the definitions of the rotation
formats.

Axis-Angle Measurements

Axis-angle is one of the simpler rotation measurement formats. This format uses two
parameters to completely describe a rotation: axis vector and angle. The usefulness of
the axis-angle format follows directly from Euler’s rotation theorem. According to the

1. Weld Joint is an exception

4 Internal Mechanics, Actuation and Sensing

4-50

theorem, any 3–D rotation or rotation sequence can be described as a pure rotation about
a single fixed axis.

To measure frame rotation in axis-angle format, use the Transform Sensor block. The
block dialog box contains separate Axis and Angle parameters that you can select to
expose the corresponding physical signal (PS) ports (labeled axs and q, respectively).
Because the axis-angle parameters are listed separately, you can choose to measure the
axis, the angle, or both.

The axis output is a 3–D unit vector in the form [ax, ay, az]. This unit vector encodes the
rotation direction according to the right-hand rule. For example, a frame spinning in a
counterclockwise direction about the +X axis has rotation axis [1 0 0]. A frame spinning
in a clockwise direction about the same axis has rotation axis [-1 0 0].

The angle output is a scalar number in the range 0–π. This number encodes the extent
of rotation about the measured axis. By default, the angle is measured in radians. You
can change the angle units in the PS-Simulink Converter block used to interface with
Simulink blocks.

Quaternion Measurements

The quaternion is a rotation representation based on hypercomplex numbers. This
representation uses a 4-vector containing one scalar (S) and three vector components (Vx,

 Rotational Measurements

4-51

Vy, Vz). The scalar component encodes the rotation angle. The vector components encode
the rotation axis.

A key advantage of quaternions is the singularity-free parameter space. Mathematical
singularities, present in Euler angle sequences, result in the loss of rotational degrees
of freedom. This phenomenon is known as gimbal lock. In SimMechanics, gimbal lock
causes numerical errors that lead to simulation failure. The absence of singularities
means that quaternions are more robust for simulation purposes.

To measure frame rotation in quaternion format, use:

• Transform Sensor block, if measuring rotation between two general frames. The
Rotation menu of the dialog box contains a Quaternion option that you can select to
expose the corresponding physical signal port (labeled Q).

• Joint block possessing spherical primitive, if measuring 3–D rotation between the two
joint frames. The Sensing menu of the dialog box contains a Position option that you
can select to expose the corresponding physical signal port (also labeled Q). For more
information, see Spherical Joint block reference page.

The quaternion output is a 4-element row vector Q S= ()V , where:

4 Internal Mechanics, Actuation and Sensing

4-52

S = ()cos q
2

and

V =

[]sinV V Vx y z

q

2

θ is the rotation angle. The angle can take any value between 0–π. [Vx, Vy, Vz] is the
rotation axis. Axis components can take any value between 0–1.

Transform Measurements

The rotation transform is a 3×3 matrix that encodes frame rotation. In terms of base
frame axes [x, y, z]B, the follower frame axes [x, y, z]F are:

x

y

z

r r r

r r r

r r r

x

y

z
B

xx xy xz

yx yy yz

zx zy zz

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

F

Each matrix column contains the coordinates of a follower frame axis resolved in the base
frame. For example, the first column contains the coordinates of the follower frame X-
axis, as resolved in the base frame. Similarly, the second and third columns contain the
coordinates of the Y and Z-axes, respectively. Operating on a vector with the rotation
matrix transforms the vector coordinates from the follower frame to the base frame.

You can sense frame rotation in terms of a rotation matrix using the Transform Sensor
block. The dialog box for this block contains a Transform option that when selected
exposes a physical signal port labeled R. Use this port to output the rotation matrix
signal, for example, for processing and analysis in a Simulink subsystem—after
converting the output physical signal to a Simulink signal through the PS-Simulink
Converter block.

 Rotational Measurements

4-53

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Actuate Joint in Four-Bar Model” on page 4-71

More About
• “Motion Sensing” on page 4-44
• “Translational Measurements” on page 4-54
• “Measurement Frames” on page 4-62

4 Internal Mechanics, Actuation and Sensing

4-54

Translational Measurements

In this section...

“Translation Sensing Overview” on page 4-54
“Measuring Translation” on page 4-54
“Cartesian Measurements” on page 4-55
“Cylindrical Measurements” on page 4-57
“Spherical Measurements” on page 4-59

Translation Sensing Overview

You can measure frame translation in different coordinate systems. These include
Cartesian, cylindrical, and spherical systems. The different coordinate systems are
available through the Transform Sensor block and, to a limited extent, through the
Joint blocks. The choice of coordinate system depends on the model. Select the coordinate
system that is most convenient for your application.

Measuring Translation

Translation is a relative quantity. The translation of one frame is meaningful only with
respect to another frame. As such, blocks with translation sensing capability require
two frames to make a measurement: measured and reference frames. In these blocks,
the follower frame port identifies the measured frame; the base frame port identifies the
reference frame of the measurement.

Some measurements are common to multiple coordinate systems. One example is the
Z-coordinate, which exists in both Cartesian and cylindrical systems. In the Transform
Sensor dialog box, coordinates that make up more than one coordinate system appear
only once. Selecting Z outputs translation along the Z-axis in both Cartesian and
cylindrical coordinate systems.

Other measurements are different but share the same name. For example, radius is a
coordinate in both spherical and cylindrical systems. The spherical radius is different
from the cylindrical radius: the former is the distance between two frame origins; the
latter is the distance between one frame origin and a frame Z-axis.

 Translational Measurements

4-55

To differentiate between the two radial coordinates, SimMechanics uses the following
convention:

• Radius — Cylindrical radial coordinate
• Distance — Spherical radial coordinate

Cartesian Measurements

The Cartesian coordinate system uses three linear coordinates—X, Y, and Z—
corresponding to three mutually orthogonal axes. Cartesian translation measurements
have units of distance, with meter being the default. You can use the PS-Simulink
Converter block to select a different physical unit when interfacing with Simulink
blocks.

4 Internal Mechanics, Actuation and Sensing

4-56

Transform Sensor

You can select any of the Cartesian axes in the Transform Sensor for translation sensing.
This is true even if translation is constrained along any of the Cartesian axes. Selecting
the Cartesian axes exposes physical signal ports x, y, and z, respectively.

The figure shows a simple model using a Transform Sensor block to measure frame
translation along all three Cartesian axes. The measurement gives the relative
translation of the follower port frame with respect to the base port frame. These frames
are, respectively, the Solid1 and Solid2 reference port frames. For more information, see
“Representing Frames” on page 1-6.

Joints

With joint blocks, you can sense translation along each prismatic primitive axis.
Selecting a sensing parameter from a prismatic primitive menu exposes the
corresponding physical signal port. For example, if you select Position from the Z
Prismatic Primitive (Pz) of a Cartesian Joint block, the block exposes physical signal
port z.

 Translational Measurements

4-57

The figure shows a simple model using a Cartesian Joint block to sense frame
translation along the three Cartesian axes. The measurement gives the relative
translation of the follower port frame with respect to the base port frame. These frames
coincide with the Solid1 and Solid reference port frames.

Cylindrical Measurements

The cylindrical coordinate system uses one angular and two linear coordinates. The
linear coordinates are the cylinder radius, R, and length, Z. The angular coordinate is
the azimuth, ϕ, about the length axis. Linear coordinates have units of distance, with
meter being the default. The angular coordinate has units of angle, with radian being the

4 Internal Mechanics, Actuation and Sensing

4-58

default. You can use the PS-Simulink Converter block to select a different physical unit
when interfacing with Simulink blocks.

Transform Sensor

Only the Transform Sensor block can sense frame translation in cylindrical coordinates.
In the dialog box of this block, you can select one or more cylindrical coordinates to
measure. The cylindrical coordinates are named Z, Radius, and Azimuth. Selecting the
cylindrical coordinates exposes physical signal ports z, rad, and azm, respectively.

Note: Z belongs to both Cartesian and cylindrical systems.

The figure shows a simple model using a Transform Sensor block to measure frame
translation along all three cylindrical axes. The measurement gives the relative
translation of the follower port frame with respect to the base port frame. These frames
are, respectively, the Solid1 and Solid2 reference port frames.

 Translational Measurements

4-59

Spherical Measurements

The spherical coordinate system uses two angular coordinates and one linear coordinate.
The linear coordinate is the spherical radius, R. The angular coordinates are the
azimuth, ϕ, and inclination, θ. The linear coordinate has units of distance, with meter
being the default. The angular coordinates have units of angle, with radian being the
default. You can use the PS-Simulink Converter block to select a different physical unit
when interfacing with Simulink blocks.

4 Internal Mechanics, Actuation and Sensing

4-60

Transform Sensor

Only the Transform Sensor block can sense frame translation in spherical coordinates. In
the dialog box of this block, you can select one or more spherical coordinates to measure.
The spherical coordinates are named Azimuth, Distance, and Inclination. Selecting
the spherical coordinates exposes physical signal ports azm, dst, and inc, respectively.

Note: Azimuth belongs to both cylindrical and spherical systems. Distance is the
spherical radius.

The figure shows a simple model using a Transform Sensor block to measure frame
translation along all three spherical axes. The measurement gives the relative
translation of the follower port frame with respect to the base port frame. These frames
are, respectively, the Solid1 and Solid2 reference port frames.

 Translational Measurements

4-61

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Actuate Joint in Four-Bar Model” on page 4-71

More About
• “Motion Sensing” on page 4-44
• “Rotational Measurements” on page 4-49
• “Measurement Frames” on page 4-62

4 Internal Mechanics, Actuation and Sensing

4-62

Measurement Frames

In this section...

“Measurement Frame Purpose” on page 4-62
“Measurement Frame Types” on page 4-63

You can sense the spatial relationship between two frames. When you do so,
SimMechanics resolves the measurement in a measurement frame. For most
joint blocks, the measurement frame is the base frame. However, if you use either
Transform Sensor or a joint block with a spherical primitive, you can select a different
measurement frame. Measurement frames that you can select include Base, Follower,
and World. The Transform Sensor block adds the choice between rotating and non-
rotating versions of the base and follower frames.

Measurement Frame Purpose

The measurement frame defines the axes that SimMechanics uses to resolve a
measurement. The measurement still describes the relationship between base and
follower frames. However, the X, Y, and Z components of that measurement refer to the
axes of the measurement frame. SimMechanics takes the measurement and projects
it onto the axes of the measurement frame that you select. The figure illustrates the
measurement frame concept.

The arrow connecting base and follower frame origins is the translation vector. If
you select the base frame as the measurement frame, SimMechanics resolves that

 Measurement Frames

4-63

translation vector along the axes of the base frame. If you select the World frame as
the measurement frame, SimMechanics instead resolves the translation vector along
the axes of the World frame. The translation vector remains the same, but the frame
SimMechanics expresses that measurement in changes.

Note that you can select the measurement frame only with certain blocks. Among joint
blocks, only those with a spherical primitive offer a selection of measurement frames. All
other joint blocks resolve their measurements in the base frame. The Transform Sensor
block offers the most extensive selection of measurement frames.

Measurement Frame Types

SimMechanics offers five different measurement frames. These include World as well as
rotating and non-rotating versions of the base and follower frames. The table describes
these measurement frames.

Measurement Frame Description

World Inertial frame at absolute rest. World is the
ultimate reference frame in a model. The
World Frame block identifies this frame in
a model.

Base Frame that connects to the B port of the
sensing block. Unless you rigidly connect it
to World, Base is generally non-inertial.

Follower Frame that connects to the F port of the
sensing block. Unless you rigidly connect it
to World, Follower is generally non-inertial.

Non-Rotating Base/Follower Non-rotating versions of the Base and
follower frames.

A non-rotating frame is a virtual
frame which, at every point in time,
SimMechanics holds coincident with the
rotating frame, but which has zero angular
velocity with respect to the World frame.

Measurements that can differ between
rotating and non-rotating frames are the
linear velocity and linear acceleration.

4 Internal Mechanics, Actuation and Sensing

4-64

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Actuate Joint in Four-Bar Model” on page 4-71

More About
• “Motion Sensing” on page 4-44
• “Rotational Measurements” on page 4-49
• “Translational Measurements” on page 4-54

 Sense Motion in Double-Pendulum Model

4-65

Sense Motion in Double-Pendulum Model

In this section...

“Model Overview” on page 4-65
“Modeling Approach” on page 4-66
“Build Model” on page 4-66
“Guide Model Assembly” on page 4-68
“Simulate Model” on page 4-68
“Save Model” on page 4-70

Model Overview

The Transform Sensor block provides the broadest motion-sensing capability in
SimMechanics models. Using this block, you can sense motion variables between any
two frames in a model. These variables can include translational and rotational position,
velocity, and acceleration.

In this example, you use a Transform Sensor block to sense the lower link translational
position with respect to the World frame. You output the position coordinates directly
to the model workspace, and then plot these coordinates using MATLAB commands.
By varying the joint state targets, you can analyze the lower-link motion under quasi-
periodic and chaotic conditions.

4 Internal Mechanics, Actuation and Sensing

4-66

Modeling Approach

In this example, you rely on gravity to cause the double pendulum to move. You displace
the links from equilibrium and then let gravity act on them. To displace the links at time
zero, you use the State Targets section of the Revolute Joint block dialog box. You can
specify position or velocity. When you are ready, you simulate the model to analyze its
motion.

To sense motion, you use the Transform Sensor block. First, you connect the base and
follower frame ports to the World Frame and lower link subsystem blocks. By connecting
the ports to these blocks, you can sense motion in the lower link with respect to the
World frame. Then, you select the translation parameters to sense. By selecting Y and
Z, you can sense translation along the Y and Z axes, respectively. You can plot these
coordinates with respect to each other and analyze the motion that they reveal.

Build Model

1 At the MATLAB command prompt, enter smdoc_double_pendulum. A double
pendulum model opens up. For instructions on how to create this model, see “Model
Double Pendulum” on page 3-14.

2 Drag these blocks into the model to sense motion.

 Sense Motion in Double-Pendulum Model

4-67

Library Block Quantity

SimMechanics > Second
Generation > Frames
and Transforms

Transform Sensor 1

SimMechanics > Second
Generation > Frames
and Transforms

World Frame 1

Simscape > Utilities PS-Simulink

Converter

2

Simulink > Sinks To Workspace 2

3 In the Transform Sensor block dialog box, select Translation > Y and Translation
> Z. The block exposes two physical signal output ports, labeled y and z.

4 In the PS-Simulink Converter blocks, specify units of cm.
5 In the To Workspace blocks, enter the variable names y_link and z_link.
6 Connect the blocks to the model as shown in the figure. You must connect the base

frame port of the Transform Sensor block to the World Frame block. The new blocks
are shaded gray.

4 Internal Mechanics, Actuation and Sensing

4-68

Guide Model Assembly

Specify the initial state of each joint. Later, you can modify this state to explore different
motion types. For the first iteration, rotate only the top link by a small angle.

1 In the Revolute Joint block dialog box, select State Targets > Specify Position
Target.

2 Set Value to 10 deg.
3 In the Revolute Joint1 block dialog box, check that State Targets > Specify

Position Target is cleared.

Simulate Model

Run the simulation. Mechanics Explorer plays a physics-based animation of the double
pendulum assembly.

You can now plot the position coordinates of the lower link. To do this, at the MATLAB
command line, enter:

figure;

plot(y_link.data, z_link.data, 'color', [60 100 175]/255);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

 Sense Motion in Double-Pendulum Model

4-69

grid on;

The figure shows the plot that opens. This plot shows that the lower link path varies only
slightly with each oscillation. This behavior is characteristic of quasi-periodic systems.

Simulate Chaotic Motion

By adjusting the revolute joint state targets, you can simulate the model under chaotic
conditions. One way to obtain chaotic motion is to rotate the top revolute joint by a large
angle. To do this, in the Revolute Joint dialog box, change State Targets > Position >
Value to 90 and click OK.

Simulate the model with the new joint state target. To plot the position coordinates of the
lower pendulum link with respect to the world frame, at the MATLAB command prompt,
enter this code:

figure;

plot(y_link.data, z_link.data, 'color', [60 100 175]/255);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

4 Internal Mechanics, Actuation and Sensing

4-70

grid on;

The figure shows the plot that opens.

Save Model

Save the model in a convenient folder under the name double_pendulum_sensing.
You reuse this model in a subsequent tutorial, “Prescribe Joint Motion in Planar
Manipulator Model” on page 4-108.

 Actuate Joint in Four-Bar Model

4-71

Actuate Joint in Four-Bar Model

In this section...

“Model Overview” on page 4-71
“Four-Bar Linkages” on page 4-72
“Modeling Approach” on page 4-74
“Build Model” on page 4-75
“Simulate Model” on page 4-78

Model Overview

In SimMechanics, you actuate a joint directly using the joint block. Depending on the
application, the joint actuation inputs can include force/torque or motion variables. In
this example, you prescribe the actuation torque for a revolute joint in a four-bar linkage
model.

Transform Sensor blocks add motion sensing to the model. You can plot the sensed
variables and use the plots for kinematic analysis. In this example, you plot the coupler
curves of three four-bar linkage types: crank-rocker, double-crank, and double-rocker.

4 Internal Mechanics, Actuation and Sensing

4-72

Four-Bar Linkages

The four-bar linkage contains four links that interconnect with four revolute joints to
form a planar closed loop. This linkage converts the motion of an input link into the
motion of an output link. Depending on the relative lengths of the four links, a four-bar
linkage can convert rotation into rotation, rotation into oscillation, or oscillation into
oscillation.

Links

Links go by different names according to their functions in the four-bar linkage. For
example, coupler links transmit motion between crank and rocker links. The table
summarizes the different link types that you may find in a four-bar linkage.

Link Motion

Crank Revolves with respect to the ground link
Rocker Oscillates with respect to the ground link
Coupler Transmits motion between crank and

rocker links
Ground Rigidly connects the four-bar linkage to the

world or another subsystem

It is common for links to have complex shapes. This is especially true of the ground link,
which may be simply the fixture holding the two pivot mounts that connect to the crank
or rocker links. You can identify links with complex shapes as the rigid span between
two adjacent revolute joints. In example “Model Four Bar” on page 3-19, the rigid span
between the two pivot mounts represents the ground link.

Linkages

The type of motion conversion that a four-bar linkage provides depends on the types
of links that it contains. For example, a four-bar linkage that contains two crank links
converts rotation at the input link into rotation at the output link. This type of linkage
is known as a double-crank linkage. Other link combinations provide different types of
motion conversion. The table describes the different types of four-bar linkages that you
can model.

Linkage Input-Output Motion

Crank-rocker Continuous rotation-oscillation (and vice-
versa)

 Actuate Joint in Four-Bar Model

4-73

Linkage Input-Output Motion

Double-Crank Continuous rotation-continuous rotation
Double-rocker Oscillation-oscillation

Grashof Condition

The Grashof theorem provides the basic condition that the four-bar linkage must satisfy
so that at least one link completes a full revolution. According to this theorem, a four-
bar linkage contains one or more crank links if the combined length of the shortest
and longest links does not exceed the combined length of the two remaining links.
Mathematically, the Grashof condition is:
s+l ≤ p+q
where:

• s is the shortest link
• l is the longest link
• p and q are the two remaining links

Grashof Linkages

A Grashof linkage can be of three different types:

• Crank-rocker
• Double-crank
• Double-rocker

By changing the ground link, you can change the Grashof linkage type. For example,
by assigning the crank link of a crank-rocker linkage as the ground link, you obtain a
double-crank linkage. The figure shows the four linkages that you obtain by changing the
ground link.

4 Internal Mechanics, Actuation and Sensing

4-74

Modeling Approach

In this example, you perform two tasks. First you add a torque actuation input to the
model. Then, you sense the motion of the crank and rocker links with respect to the
World frame. The actuation input is a torque that you apply to the joint connecting the
base to the crank link. Because you apply the torque at the joint, you can add this torque
directly through the joint block. The block that you add the actuation input to is called
Base-Crank Revolute Joint.

You add the actuation input to the joint block through a physical signal input port. This
port is hidden by default. To display it, you must select Provided by Input from the
Actuation > Torque drop-down list.

 Actuate Joint in Four-Bar Model

4-75

You can then specify the torque value using either Simscape or Simulink blocks. If you
use Simulink blocks, you must use the Simulink-PS Converter block. This block
converts the Simulink signal into a physical signal that SimMechanics can use. For more
information, see “Actuating and Sensing Using Physical Signals” on page 4-29.

To sense crank and rocker link motion, you use the Transform Sensor block. With this
block, you can sense motion between any two frames in a model. In this example, you use
it to sense the [Y Z] coordinates of the crank and rocker links with respect to the World
frame.

The physical signal output ports of the Transform Sensor blocks are hidden by default.
To display them, you must select the appropriate motion outputs. Using the PS-
Simulink Converter, you can convert the physical signal outputs into Simulink
signals. You can then connect the resulting Simulink signals to other Simulink blocks.

In this example, you output the crank and rocker link coordinates to the workspace using
Simulink To Workspace blocks. The output from these blocks provide the basis for
phase plots showing the different link paths.

Build Model

Provide the joint actuation input, specify the joint internal mechanics, and sense the
position coordinates of the coupler link end frames.

Provide Joint Actuation Input

1 At the MATLAB command prompt, enter smdoc_four_bar. A four bar model opens
up. For instructions on how to create this model, see “Model Four Bar” on page 3-19.

2 In the Base-Crank Revolute Joint block dialog box, in the Actuation > Torque
drop-down list, select Provided by Input. The block exposes a physical signal
input port, labeled t.

3 Drag these blocks into the model. The blocks enable you to specify the actuation
torque signal.

Library Block

Simulink > Sources Constant

Simscape > Utilities Simulink-PS Converter

4 Connect the blocks as shown in the figure. The new blocks are shaded gray.

4 Internal Mechanics, Actuation and Sensing

4-76

Specify Joint Internal Mechanics

Real joints dissipate energy due to damping. You can specify joint damping directly
in the block dialog boxes. In each Revolute Joint block dialog box, under Internal
Mechanics > Damping, enter 5e-4 and press OK.

Sense Link Position Coordinates

1 Add these blocks to the model. The blocks enable you to sense frame position during
simulation.

Library Block Quantity

SimMechanics >
Frames and Transforms

Transform Sensor 2

 Actuate Joint in Four-Bar Model

4-77

Library Block Quantity

SimMechanics >
Frames and Transforms

World Frame 1

Simscape > Utilities PS-Simulink

Converter

4

Simulink > Sinks To Workspace 4

2 In the Transform Sensor block dialog boxes, select Translation > Y and
Translation > Z. Resize the block as needed.

3 In the Input Signal Unit parameters of the PS-Simulink Converter block dialog
boxes, enter cm.

4 In the Variable Name parameters of the To Workspace block dialog boxes, enter the
variable names:

• y_crank

• z_crank

• y_rocker

• z_rocker

5 Connect and name the blocks as shown in the figure, rotating them as needed.
Ensure that the To Workspace blocks with the z_crank and z_rocker variable names
connect to the z frame ports of the Transform Sensor blocks. The new blocks are
shaded gray.

4 Internal Mechanics, Actuation and Sensing

4-78

Simulate Model

Run the simulation. You can do this in the Simulink tool bar by clicking the run button.
Mechanics Explorer plays a physics-based animation of the four bar assembly.

 Actuate Joint in Four-Bar Model

4-79

Once the simulation ends, you can plot the position coordinates of the coupler link end
frames, e.g., by entering the following code at the MATLAB command line:

figure;

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);

hold;

plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

axis equal; grid on;

The figure shows the plot that opens. This plot shows that the crank completes a full
revolution, while the rocker completes a partial revolution, e.g., it oscillates. This
behavior is characteristic of crank-rocker systems.

4 Internal Mechanics, Actuation and Sensing

4-80

Simulate Model in Double-Crank Mode

Try simulating the model in double-crank mode. You can change the four-bar linkage
into a double-crank linkage by changing the binary link lengths according to the table.

Block Parameter Value

Binary Link A Length 25

Binary Link B Length 20

Binary Link A1 Length 30

Crank-Base Transform Translation > Offset 5

Rocker-Base Transform Translation > Offset 5

Update and simulate the model. The figure shows the updated visualization display in
Mechanics Explorer.

 Actuate Joint in Four-Bar Model

4-81

Plot the position coordinates of the coupler link end frames. At the MATLAB command
line, enter:

figure;

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);

hold;

plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

axis equal; grid on;

The figure shows the plot that opens. This plot shows that both links complete a full
revolution. This behavior is characteristic of double-crank linkages.

4 Internal Mechanics, Actuation and Sensing

4-82

 Analyze Coupler Curves at Various Coupler Lengths

4-83

Analyze Coupler Curves at Various Coupler Lengths

In this section...

“Model Overview” on page 4-83
“Build Model” on page 4-83
“Specify Block Parameters” on page 4-85
“Create Simulation Script” on page 4-86
“Run Simulation Script” on page 4-87

Model Overview

In this tutorial, you create a simple MATLAB script to simulate a four-bar model at
various coupler lengths. The script uses the coupler motion coordinates, obtained using
a Transform Sensor block, to plot the resulting coupler curve at each value of the coupler
length. For information on how to create the four-bar model used in this tutorial, see
“Model Four Bar” on page 3-19.

Build Model

1 At the MATLAB command prompt, enter smdoc_four_bar. A four-bar model opens
up. For instructions on how to create this model, see “Model Four Bar” on page 3-19.

4 Internal Mechanics, Actuation and Sensing

4-84

2 Under the mask of the Binary Link B block, connect a third Outport block as shown
in the figure. You can add an Outport block by copying and pasting Conn1 or Conn2.
The new block identifies the frame whose trajectory you plot in this tutorial.

3 Add the following blocks to the model. During simulation, the Transform Sensor
block computes and outputs the coupler trajectory with respect to the world frame.

Library Block Quantity

Frames and Transforms World Frame 1
Frames and Transforms Transform Sensor 1
Simscape Utilities PS-Simulink

Converter

2

Simulink Sinks Outport 2

4 In the Transform Sensor block dialog box, select these variables:

• Translation > Y
• Translation > Z

The block exposes frame ports y and z, through which it outputs the coupler
trajectory coordinates.

5 Connect the blocks as shown in the figure. Be sure to flip the Transform Sensor block
so that its base frame port, labeled B, connects to the World Frame block.

 Analyze Coupler Curves at Various Coupler Lengths

4-85

Specify Block Parameters

1 In the Mechanism Configuration block, change Uniform Gravity to None.
2 In the Base-Crank Revolute Joint block, specify the following velocity state targets.

The targets provide an adequate source of motion for the purposes of this tutorial.

4 Internal Mechanics, Actuation and Sensing

4-86

• Select State Targets > Specify Velocity.
• In State Targets > Specify Velocity > Value, enter 2 rev/s.
• Deselect State Target > Specify Position.

3 Specify the following link lengths. The coupler link length is parameterized in terms
of a MATLAB variable, LCoupler, enabling you change its value iteratively using a
simple MATLAB script.

Block Parameter Value

Binary Link B Length LCoupler
Binary Link A1 Length 25

4 Save the model in a convenient folder, naming it smdoc_four_bar_msensing.

Create Simulation Script

Create a MATLAB script to iteratively run simulation at various coupler link lengths:

1 On the MATLAB toolstrip, click New Script.
2 In the script, enter the following code:

% Run simulation nine times, each time

% increasing coupler length by 1 cm.

% The original coupler length is 20 cm.

for i = (0:8);

 LCoupler = 20+i;

 % Simulate model at the current coupler link length (LCoupler),

 % saving the Outport block data into variables y and z.

 [~, ~, y, z] = sim('smdoc_four_bar_msensing');

 % Plot the [y, z] coordinates of each coupler curve

 % on the x = i plane. i corresponds to the simulation run number.

 x = zeros(size(y)) + i;

 plot3(x, y, z, 'Color', [1 0.8-0.1*i 0.8-0.1*i]);

 view(30, 60); hold on;

 end

The code runs simulation at nine different coupler link lengths. It then plots the
trajectory coordinates of the coupler link center frame with respect to the world
frame. Coupler link lengths range from 20 cm to 28 cm.

 Analyze Coupler Curves at Various Coupler Lengths

4-87

3 Save the script as sim_four_bar in the folder containing the four-bar model.

Run Simulation Script

Run the sim_four_bar script. In the MATLAB Editor toolstrip, click the Run button or,
with the editor active, press F5. Mechanics Explorer opens with a dynamic 3-D view of
the four-bar model.

SimMechanics iteratively runs each simulation, adding the resulting coupler link curve
to the active plot. The figure shows the final plot.

4 Internal Mechanics, Actuation and Sensing

4-88

You can use the simple approach shown in this tutorial to analyze model dynamics at
various parameter values. For example, you can create a MATLAB script to simulate a
crank-slider model at different coupler link lengths, plotting for each simulation run the
constraint force acting on the piston.

 Sense Forces and Torques at Joints

4-89

Sense Forces and Torques at Joints

In this section...

“Overview” on page 4-89
“Open Model” on page 4-90
“Sense Actuation Torque” on page 4-90
“Sense Constraint Forces” on page 4-93
“Sense Total Forces” on page 4-95

Overview

SimMechanics provides force and torque sensing in joint blocks. You can use this sensing
capability to compute and output various types of forces and torques acting directly at
joints. Force and torque types that you can sense include those attributable to:

• Joint actuation inputs
• Joint constraints
• Joint actuation inputs, constraints, and internal mechanics combined

In this tutorial, you explore the different types of force and torque sensing that
SimMechanics joint blocks provide.

4 Internal Mechanics, Actuation and Sensing

4-90

Open Model

At the MATLAB command prompt, enter smdoc_rack_pinion_c. SimMechanics
opens a rack and pinion model that you can use to explore the force and torque sensing
capability of joint blocks.

Sense Actuation Torque

The rack and pinion model contains an actuation torque input that drives the pinion
revolute joint. A Simulink-PS Converter block processes the input signal using a second-
order filter, smoothing any abrupt changes or discontinuities the signal may have. To
sense the actuation torque as observed at the Revolute Joint block:

 Sense Forces and Torques at Joints

4-91

1 In the Revolute Joint block dialog box, select Z Revolute Primitive (Rz) > Sensing
> Actuator Torque. The block exposes a physical signal port, labeled t. This
port outputs the 3-D vector components of the joint actuator torque in a Simscape
physical signal.

2 Drag the following blocks into the model:

• PS-Simulink Converter from the Simscape > Utilities library
• To Workspace from the Simulink > Sinks library

3 Connect the blocks as shown in the figure.

4 Internal Mechanics, Actuation and Sensing

4-92

4 Simulate the model, e.g., by pressing Ctrl+D. The To Workspace block outputs the
actuator torque signal into a time-series variable, simout, available in the MATLAB
base workspace.

5 At the MATLAB command prompt, enter:

figure;

plot(simout);

MATLAB plots the vector components of the joint actuator torque. All but the Z
component are zero throughout the simulation.

Compare the actuator torque plot to the original input signal in the Signal Builder
block. Neglecting any signal smoothing due to the second-order filtering, the two
signals are identical. The following figure shows the original input signal.

 Sense Forces and Torques at Joints

4-93

Actuator force and torque sensing enables you to analyze the required forces and torques
to yield a prescribed joint trajectory. Use this feature in your model to perform inverse
dynamic and other types of analysis.

Sense Constraint Forces

Joint constraint forces, which act normal to the joint primitive axes, restrict motion to
the allotted joint degrees of freedom. In the Revolute Joint block, the constraint forces
resist the pull of gravity, keeping the pinion fixed with respect to the world frame. To
sense the constraint forces:

1 In the Mechanism Configuration block, set Uniform Gravity to Constant. This
setting ensures that gravity acts on the rack and pinion system. Check that the
gravity vector is [0 0 -9.80665].

2 In the Revolute Joint block dialog box, select Composite Force/Torque Sensing >
Constraint Force. The block exposes the physical signal port fc. This port provides
the vector components of the joint-wide constraint force in a Simscape physical
signal. By default, this is the constraint force that the follower port frame exerts on
the base port frame, resolved in the base port frame.

4 Internal Mechanics, Actuation and Sensing

4-94

3 Deselect Z Revolute Primitive (Rz) > Sensing > Actuator Torque.
4 Check that the PS-Simulink Converter block now connects to the physical signal port

fc.
5 Simulate the model. At the MATLAB command prompt, enter:

figure;

plot(simout);

MATLAB plots the constraint force components with respect to time. All but one
component are zero throughout simulation. The Z component, which opposes the
gravity vector, is the only component needed to hold the joint frames in place.

Constraint forces ensure that weld joint frames remain fixed with respect to each other.
You can place a Weld Joint block inside a rigid body subsystem to sense the internal
forces and torques acting within that body during simulation. For an example of how you
can do this in a double pendulum model, see “Sense Internal Forces in Double-Pendulum
Link” on page 4-97.

 Sense Forces and Torques at Joints

4-95

Sense Total Forces

In addition to actuation and constraint forces and torques, joint frames can also interact
by exchanging internal forces and torques. These forces and torques, which are due
to spring and damper elements internal to the joint itself, enable you to account for
mechanical energy dissipation and storage between the joint frames. You can sense the
total composite force and torque acting at a joint, which includes contributions from
actuation, constraint, and internal forces and torques. To sense the total torque acting
between the port frames of the Revolute Joint block:

1 In the Revolute Joint block dialog box, select Composite Force/Torque Sensing >
Total Torque. The block exposes the physical signal port tt. This port outputs the
total torque acting between the joint frames as a Simscape physical signal.

2 Deselect Composite Force/Torque Sensing > Constraint Force.
3 Simulate the model.
4 At the MATLAB command prompt, enter:

figure;

plot(simout);

MATLAB plots the vector components of the total torque vector as a function of time.
All but one component are zero throughout simulation. The nonzero component, a
torque directed about the Z axis, contains torque contributions from actuation and
internal torques, but none from constraint torques.

4 Internal Mechanics, Actuation and Sensing

4-96

The torque peaks correspond to the actuation torque values specified in the input
signal. These peaks decay with time due to the internal damping torques specified
in the Revolute Joint block dialog box. The damping torques cause the energy
dissipation evident in the transient portions of the total torque plot.

To verify that the total torque excludes any contribution from constraint torques,
try sensing the constraint torques directly. A plot of the constraint torques will show
that they are in fact negligible.

 Sense Internal Forces in Double-Pendulum Link

4-97

Sense Internal Forces in Double-Pendulum Link
In this section...

“Model Overview” on page 4-97
“Add Weld Joint Block to Model” on page 4-98
“Add Constraint Force Sensing” on page 4-99
“Add Damping to Joints” on page 4-100
“Simulate Model” on page 4-100
“Plot Constraint Forces” on page 4-101

Model Overview

SimMechanics provides various types of force and torque sensing. Using joint blocks, you
can sense the actuation forces and torques driving individual joint primitives. You can
also sense the total and constraint forces acting on an entire joint.

In this tutorial, you use a Weld Joint block to sense the time-varying internal forces
that hold a rigid body together. A double-pendulum model, smdoc_double_pendulum,
provides the starting point for the tutorial. For information on how to create this model,
see “Model Double Pendulum” on page 3-14.

4 Internal Mechanics, Actuation and Sensing

4-98

By connecting the Weld Joint block between solid elements in a binary link subsystem,
you can sense the constraint forces acting between them. The following figure shows the
constraint forces that you sense in this tutorial. The longitudinal constraint force aligns
with the X axis of the weld joint frames. The transverse constraint force aligns with the Y
axis. The constraint force along the Z axis is negligible and therefore ignored.

The Weld Joint block enables you to sense the constraint force that the follower frame
exerts on the base frame or, alternatively, the constraint force that the base frame exerts
on the follower frame. The two forces have the same magnitude but, as shown in the
binary link schematic, opposite directions. In this tutorial, you sense the constraint force
that the follower frame exerts on the base frame.

You can also select the frame to resolve the constraint force measurement in. The
resolution frame can be either the base frame or the follower frame. Certain joint blocks
allow their port frames to have different orientations, causing the same measurement
to differ depending on your choice of resolution frame. However, because the Weld Joint
block provides zero degrees of freedom, both resolution frames yield the same constraint
force vector components.

Add Weld Joint Block to Model

1 At the MATLAB command prompt, enter smdoc_double_pendulum. A double-
pendulum model opens up.

2 Click the Look Inside Mask arrow in the Binary Link A1 subsystem block.
3 From the SimMechanics > Second Generation > Joints library, drag a Weld

Joint block.
4 Connect the Weld Joint block as shown in the figure. This block enables you to sense

the constraint forces that hold the rigid body together during motion. Because it

 Sense Internal Forces in Double-Pendulum Link

4-99

provides zero degrees of freedom between its port frames, it has no effect on model
dynamics.

Add Constraint Force Sensing

1 In the Weld Joint block dialog box, select Constraint Force. The block exposes a
physical signal output port labeled fc.

2 Add a Simscape Output port to the subsystem block diagram. Connect the block as
shown in the figure and exit the subsystem view.

3 Drag the following blocks into the main window of the model. These blocks enable
you to output the constraint force signal into the MATLAB workspace.

Library Block

Simscape > Utilities PS-Simulink Converter

Simulink > Sinks To Workspace

4 Connect the blocks as shown in the figure. Check that the PS-Simulink Converter
block connects to the newly added Simscape port.

4 Internal Mechanics, Actuation and Sensing

4-100

5 Specify these block parameters.

Block Dialog Box Parameter Value

PS-Simulink Converter Output signal unit mN

To Workspace Variable name fcf_weld

Units of mN are appropriate for this model, which contains Aluminum links roughly
30 cm × 2 cm × 0.8 cm.

Add Damping to Joints

In each Revolute Joint block dialog box, select Internal Mechanics > Damping
Coefficient and enter 1e-5. The damping coefficient enables you to model energy
dissipation during motion, so that the double-pendulum model eventually comes to rest.

Simulate Model

1 In the Simulink Editor menu bar, select Simulation > Model Configuration
Parameters.

2 In the Solver tab of the Configuration Parameters window, set the Solver parameter
to ode15s. This is the recommended solver for physical models.

3 In the same tab, set the Max step size parameter to 0.001 s.
4 Run the simulation. You can do this from the Simulink Editor menu bar, by selecting

Simulation > Run. Mechanics Explorer opens with a dynamic view of the model.
In the Mechanics Explorer menu bar, select the Isometric View button to view the
double pendulum from an isometric perspective.

 Sense Internal Forces in Double-Pendulum Link

4-101

Plot Constraint Forces

At the MATLAB command prompt, enter the following plot commands:

figure;

grid on;

xlabel('T, s');

ylabel('F_{C,X}, mN');

zlabel('F_{C,Y}, mN');

plot3(fcf_weld.time, fcf_weld.data(:,1), fcf_weld.data(:,2),...

'.', 'MarkerSize', 1, 'Color', 'r');

MATLAB plots the axial and transverse constraint forces with respect to time in 3-D. The
figure shows the resulting plot.

4 Internal Mechanics, Actuation and Sensing

4-102

 Prescribe Joint Motion in Four-Bar Model

4-103

Prescribe Joint Motion in Four-Bar Model

In this section...

“Model Overview” on page 4-103
“Build Model” on page 4-103
“Simulate Model” on page 4-106

Model Overview

In this tutorial, you prescribe the time-varying crank angle of a four-bar linkage using
a Revolute Joint block. Then, during simulation, you sense the actuation torque at the
same joint corresponding to the prescribed motion.

Build Model

1 At the MATLAB command prompt, enter smdoc_four_bar. A four-bar model opens.
This is the model you create in tutorial “Model Four Bar” on page 3-19.

2 In the dialog box of the Base-Crank Revolute Joint block, specify the following
parameters settings.

Parameter Setting

Actuation > Torque Automatically Computed

4 Internal Mechanics, Actuation and Sensing

4-104

Parameter Setting

Actuation > Motion Provided by Input

Sensing > Actuator Torque Selected

The joint block displays two physical signal ports. Input port q accepts the joint
angular position. Output port t provides the joint actuation torque required to
achieve that angular position.

3 In each of the four Revolute Joint block dialog boxes, set Internal Mechanics >
Damping Coefficient to 5e-4 N*m/(deg/s). During simulation, damping forces
between the joint frames account for dissipative losses at the joints.

4 Drag the following blocks into the model. These blocks enable you to specify an
actuation torque signal and plot the joint position.

Block Library

Simulink-PS Converter Simscape > Utilities
PS-Simulink Converter Simscape > Utilities
Scope Simulink > Sinks
Signal Builder Simulink > Sources

5 Connect the blocks as shown in the figure.

 Prescribe Joint Motion in Four-Bar Model

4-105

6 In the Input Handling tab of the Simulink-PS Converter block dialog box, specify the
following block parameters.

Parameter Value

Filtering and derivatives Filter input

Input filtering order Second-order filtering

7 In the Signal Builder window, specify the joint angular trajectory as shown in the
figure.

4 Internal Mechanics, Actuation and Sensing

4-106

This signal corresponds to a constant angular speed of 1 rad/s from t = 1s onwards.

Simulate Model

Run the simulation, e.g., by selecting Simulation > Run from the Simulink menu bar.
Mechanics Explorer opens with a dynamic display of the four-bar model.

 Prescribe Joint Motion in Four-Bar Model

4-107

Open the Scope window. The scope plot shows the joint actuation torque with which you
can achieve the motion you prescribed.

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Prescribe Joint Motion in Planar Manipulator Model” on page 4-108
• “Specify Motion Input Derivatives” on page 4-26

4 Internal Mechanics, Actuation and Sensing

4-108

Prescribe Joint Motion in Planar Manipulator Model

In this section...

“Model Overview” on page 4-108
“Add Virtual Joint” on page 4-109
“Prescribe Motion Inputs” on page 4-110
“Sense Joint Actuation Torques” on page 4-114
“Simulate Model” on page 4-115

Model Overview

In this tutorial, you prescribe the time-varying trajectory coordinates of a planar
manipulator end frame with respect to the world frame using a 6-DOF Joint block. This
block provides the requisite degrees of freedom between the two frames, but it does not
represent a real physical connection between them. The joint it represents is said to be
virtual.

The time-varying coordinates trace a square pattern, achieved by automatically
computing and applying actuation torques at the various manipulator joints. During
simulation, you can output the automatically computed torques and plot them using
Simulink blocks or MATLAB commands, e.g. for analysis purposes.

 Prescribe Joint Motion in Planar Manipulator Model

4-109

Add Virtual Joint

1 At the MATLAB command prompt, enter smdoc_double_pendulum. A double
pendulum model, which in this tutorial you adapt as a simple planar manipulator
model, opens. For instructions on how to create this model, see “Model Double
Pendulum” on page 3-14

2 From the SimMechanics > Second Generation > Joints library, drag a 6-DOF
Joint block and connect it as shown in the figure. This block represents a virtual
joint, which you use to specify the manipulator end frame with respect to the world
frame.

4 Internal Mechanics, Actuation and Sensing

4-110

Note: Check that the base port frame (B) connects to the world frame. The base port
frame functions as the reference frame for any joint motion input that you provide.
Switching the base and follower port frames causes the block to interpret any motion
input with respect to a different frame, possibly altering the manipulator end frame
trajectory.

Prescribe Motion Inputs

1 In the 6-DOF Joint block dialog box, specify these parameters settings.

Parameter Select

Y Prismatic Primitive (Py) >
Actuation > Motion

Provided by Input

Z Prismatic Primitive (Pz) >
Actuation > Motion

Provided by Input

The block exposes two physical signal ports through which you can provide the joint
motion inputs.

2 Drag these blocks into the model.

 Prescribe Joint Motion in Planar Manipulator Model

4-111

Library Block Quantity

Simscape > Utilities Simulink-PS

Converter

2

Simulink > Sources Signal Builder 2

The Signal Builder blocks provide the motion inputs as Simulink signals. The
Simulink-PS Converter blocks convert the Simulink signals into Simscape physical
signals compatible with SimMechanics blocks.

3 Connect the blocks as shown in the figure.

4 Open the dialog box of the Signal Builder block connected to port py of the 6-
DOF Joint block. Specify this signal, the time-varying Y coordinate of the square
trajectory the manipulator end frame is to follow.

4 Internal Mechanics, Actuation and Sensing

4-112

5 Open the dialog box of the Signal Builder block connected to port pz of the 6–
DOF Joint block. Specify this signal, the time-varying Z coordinate of the square
trajectory the manipulator end frame is to follow.

 Prescribe Joint Motion in Planar Manipulator Model

4-113

6 In the dialog boxes of the Simulink-PS Converter blocks, specify the input signal
units and filtering settings. SimMechanics requires that you either specify second-
order filtering or provide the first two time derivatives of the trajectory coordinates.

Parameter Value

Units > Input signal unit cm

Input Handling > Filtering and
derivatives

Filter input

Input Handling > Input filtering
order

Second-order filtering

Input Handling > Input filtering
time constant (in seconds)

0.1

Small filtering constants can slow simulation significantly. For most SimMechanics
models, a value of 0.1 seconds is a good choice. In this tutorial, this value suffices.

4 Internal Mechanics, Actuation and Sensing

4-114

Sense Joint Actuation Torques

1 In the dialog boxes of the two Revolute Joint blocks, set the following actuation and
sensing parameters.

Parameter Setting

Actuation > Torque Automatically Computed

Sensing > Actuation Torque Selected

SimMechanics requires the number of joint primitive degrees of freedom with motion
inputs to equal the number with automatically computed joint actuation forces and
torques. If the model does not meet this condition, simulation fails with an error.

2 Drag these blocks into the model.

Library Block Quantity

Simscape > Utilities PS-Simulink

Converter

2

Simulink > Sinks To Workspace 2

The PS-Simulink Converter blocks convert the physical signal outputs into Simulink
signals compatible with other Simulink blocks.

3 In the two To Workspace block dialog boxes, enter the variable names t1 and t2.
4 Connect the blocks as shown in the figure.

 Prescribe Joint Motion in Planar Manipulator Model

4-115

Simulate Model

Attempt to run the simulation. You can do this in the Simulink Editor menu bar, by
selecting Simulation > Run. Simulation fails with an error arising from the closed
kinematic loop present in the model. SimMechanics requires this loop to contain at least
one joint block without motion inputs or automatically computed actuation forces or
torques.

1 From the SimMechanics > Second Generation > Joints library, drag a Weld
Joint block and connect it inside one of the Binary Link A subsystems.

4 Internal Mechanics, Actuation and Sensing

4-116

Adding the Weld Joint block ensures that the now-closed-loop system contains at
least one joint block without motion inputs or computed actuation torques.

Run the simulation once again. Mechanics Explorer opens with a dynamic 3-D display of
the two-bar linkage.

Plot the computed actuation torques acting at the two revolute joints in the linkage. At
the MATLAB command line, enter this code:

figure;

hold on;

plot(t1.time, t1.data, 'color', [60 100 175]/255);

plot(t2.time, t2.data, 'color', [210 120 0]/255);

xlabel('Time');

ylabel('Torque (N*m)');

 Prescribe Joint Motion in Planar Manipulator Model

4-117

grid on;

The plot shows the time-varying actuation torques acting at the two revolute joints.
These torques enable the manipulator end frame to trace the prescribed square
trajectory.

Related Examples
• “Sense Motion in Double-Pendulum Model” on page 4-65
• “Prescribe Joint Motion in Four-Bar Model” on page 4-103
• “Specify Motion Input Derivatives” on page 4-26

More About
• “Joint Actuation” on page 4-18
• “Actuating and Sensing Using Physical Signals” on page 4-29

Simulation and Analysis

5

Simulation

• “Configure Model for Simulation” on page 5-2
• “Find and Fix Simulation Issues” on page 5-4

5 Simulation

5-2

Configure Model for Simulation

During simulation, SimMechanics employs a Simulink global solver to determine the
configuration of a model as a function of time. You can select the best solver for your
application from a list of solvers that Simulink provides. Simulation parameters include
the numerical step used to progress through the simulation and the solver tolerance
values. Adjust the parameters to optimize speed and accuracy of the simulation.

For solver selection and parameter specification, see:

• “Solvers” in the Simulink documentation.
• “Setting Up Solvers for Physical Models” in the Simscape documentation.

Specify Solver Settings

To select a global solver for your model:

1 On the Simulink menu bar, click Simulation > Model Configuration
Parameters.

2 On the Tree View pane, select Solver.
3 In Solver Options, click Type and select Variable-step or Fixed-step.

Note: For best performance, select Variable-step. For model deployment, select
Fixed-step.

4 Click Solver and select the appropriate solver for your application. The default
solver is ODE45 (Dormand-Prince).

To modify the global solver parameters for your model:

1 In the Solver options pane of the Model Configuration Parameters window,
enter the desired values for step size and tolerance parameters.

Reducing the values of the step size and tolerance parameters enhances simulation
accuracy, but decreases simulation speed. Adjust the parameters to obtain an optimal
trade-off between simulation speed and accuracy.

Related Examples
• “Configure Model for Rapid Accelerator Mode” on page 8-6

 Configure Model for Simulation

5-3

• “Find and Fix Simulation Issues” on page 5-4

5 Simulation

5-4

Find and Fix Simulation Issues

In this section...

“Models with For Each Subsystem Blocks Have Limited Visualization” on page 5-4
“Models with Model Blocks Have No Visualization” on page 5-4
“Simscape Local Solvers Do Not Work with SimMechanics” on page 5-4

Under certain conditions, a model that you simulate can behave in unexpected ways.
Some issues that you can encounter while simulating a SimMechanics model include:

• Models with For Each Subsystem blocks have limited visualization
• Models with Model blocks have no visualization
• Simscape local solvers do not work for SimMechanics

Models with For Each Subsystem Blocks Have Limited Visualization

Models with one or more For Each Subsystem blocks simulate with limited
visualization. The Mechanics Explorer visualization utility displays the model in only
one of the instances which the For Each Subsystem block provides. The visualization
limitation does not affect model simulation—SimMechanics simulates the model for all
instances of the block.

Models with Model Blocks Have No Visualization

Models with Model blocks (known as referenced models) simulate with no visualization.
During model simulation, SimMechanics issues a warning at the MATLAB command
line. The Mechanics Explorer visualization utility does not open.

Simscape Local Solvers Do Not Work with SimMechanics

SimMechanics software does not support Simscape local solvers. If you select a local
solver in the Simscape Solver Configuration block, the solver does not apply to the
SimMechanics portion of a model. SimMechanics blocks continue to use the Simulink
global solver that you select in Model Configuration Parameters for your model.

 Find and Fix Simulation Issues

5-5

Note: SimMechanics requires the Simulink global solver to be continuous. If the global
solver is discrete, SimMechanics issues an error and the model does not simulate. This
requirement applies to both fixed- and variable-step solvers.

Related Examples
• “Configure Model for Simulation” on page 5-2
• “Configure Model for Rapid Accelerator Mode” on page 8-6

6

Visualization and Animation

• “Model Visualization” on page 6-2
• “Open Mechanics Explorer” on page 6-5
• “Modify Model View” on page 6-6
• “Filtering Model Visualization” on page 6-11
• “Filter Radial Engine Visualization” on page 6-17
• “Visualize Frames” on page 6-24
• “Go to Block from Mechanics Explorer” on page 6-29
• “Configure Model for Video Recording” on page 6-31
• “Record Animation Video” on page 6-34
• “Turn Model Visualization Off and On” on page 6-35
• “Find and Fix Visualization Issues” on page 6-36

6 Visualization and Animation

6-2

Model Visualization

In this section...

“About Visualization” on page 6-2
“Visualizing Individual Solids” on page 6-2
“Visualizing Bodies and Assemblies” on page 6-3

About Visualization

Visualization is the graphical rendering of bodies and multibody assemblies from a
model. You can use it as a modeling aid, e.g., to visually check bodies during modeling
and multibody connections during assembly or as a qualitative analysis tool, e.g., to
analyze motion during simulation.

Visualizing Individual Solids

To visualize a solid while modeling, you use the Solid block. This block provides a
visualization pane that you can use to view the solid from different perspectives. You
can select a standard viewpoint or rotate, pan, and zoom your solid. The figure shows the
Solid block visualization pane.

 Model Visualization

6-3

You can view a solid before connecting the Solid block to a valid physical network.
However, you must first specify the solid shape and color. If parameterizing these
properties in terms of MATLAB variables, you must also initialize these variables—e.g.,
in the model workspace or in a subsystem mask.

Visualizing Bodies and Assemblies

To visualize a compound rigid body—one containing several solids—or a multibody
assembly, you use Mechanics Explorer. You can view a model from various perspectives
by selecting a standard view or by rotating, panning, and zooming. The figure shows
Mechanics Explorer.

6 Visualization and Animation

6-4

Mechanics Explorer enables you to:

• View a model in its initial configuration. You must update the block diagram, e.g., by
selecting Simulation > Update diagram.

• View a model animation during simulation. You must run simulation, e.g., by
selecting Simulation > Run.

To visualize a model, the block diagram must contain a topologically valid physical
network.

 Open Mechanics Explorer

6-5

Open Mechanics Explorer

Mechanics Explorer opens automatically when you update or simulate a model with
SimMechanics blocks. For each model that you update or simulate, Mechanics Explorer
opens a new tab with its own tree view, property view, and visualization panes. You can
modify the model view in one tab without affecting the remaining open tabs.

If Mechanics Explorer does not automatically open on model update or simulation,
you may have disabled model visualization. For more information, see “Turn Model
Visualization Off and On” on page 6-35.

6 Visualization and Animation

6-6

Modify Model View

In this section...

“Model Visualization” on page 6-6
“Select a Standard View” on page 6-6
“Set View Convention” on page 6-7
“Rotate, Pan, and Zoom View” on page 6-8
“Split Model View” on page 6-9

Model Visualization

Multibody models lend themselves to 3-D visualization, a qualitative means of analysis
that you can use to examine rigid body geometries, mechanical connections, and
trajectories in three-dimensional space. In SimMechanics, you can visualize a model
using Mechanics Explorer, adjusting the view point and detail level as needed. You can
modify the model view by:

• Selecting a view convention.
• Selecting a standard view.
• Rotating, panning, and zooming.

Select a Standard View

Some view points are so widely used that they are called standard. The isometric view
point, corresponding to equal 120° angles between any two world frame axes, is one
example. In Mechanics Explorer, you can select such view points by clicking the standard
view buttons.

Standard View Buttons

The figure shows a Cardan gear model from the different view points using a Z up (XY
Top) view convention.

 Modify Model View

6-7

Set View Convention

The view convention helps to determine the perspective from which you view your model.
You can align three world frame axes with the vertical direction on your screen, each
corresponding to a different view convention:

• Y up (XY Front)

• Z up (XY Top)

• Z down (YZ Front)

The figure shows a Cardan gear model from an isometric perspective using the three
view conventions: Y up, Z up, and Z down.

6 Visualization and Animation

6-8

To change the view convention:

1 In the Mechanics Explorer tool strip, set View convention to one of the three
options.

2 Select a standard view button.

The new view convention takes effect the moment you select a standard view.

Rotate, Pan, and Zoom View

To view your model from an arbitrary point of view or at varying zoom levels, use the
Rotate, Pan, and Zoom buttons. You can find these buttons in the Mechanics Explorer
tool strip.

You can also use keyboard-and-mouse shortcuts. The table summarizes these shortcuts.

 Modify Model View

6-9

Button Shortcut

Rotate 1 Click and hold the mouse scroll wheel.
2 Move the mouse in the direction you

want to rotate the model.
Pan 1 Press and hold Shift.

2 Click and hold the mouse scroll wheel.
3 Move the mouse in the direction you

want to pan the model.
Zoom 1 Press and hold Ctrl.

2 Click and hold the mouse scroll wheel.
3 Move the mouse up to zoom in, down to

zoom out.

Split Model View

You can view your model from different perspectives, for example, to examine its motion
in different planes. So that you can compare different model views, Mechanics Explorer
enables you to split the visualization pane into tiles, each with its own view. To split the
screen, you use the Mechanics Explorer toolstrip buttons shown in the figure.

Use the buttons to:

• Split the model view into four equally sized tiles, each with a different view point
(front, right, top, and isometric views).

• Merge all tiles into a single pane with the view point of the last highlighted tile.
• Split a visualization tile vertically or horizontally into two equally sized tiles.

The figure shows the Cardan gear model with a four-way visualization split.

6 Visualization and Animation

6-10

You can merge two tiles by clicking the black dot between the tiles. To ensure that the
resulting tile uses the view point of one or the other tile, select that tile first before
clicking the black dot between the tiles.

 Filtering Model Visualization

6-11

Filtering Model Visualization

In this section...

“What Is Visualization Filtering?” on page 6-11
“Changing Component Visibility” on page 6-12
“Visualization Filtering Options” on page 6-13
“Components You Can Filter” on page 6-13
“Model Hierarchy and Tree Nodes” on page 6-14
“Filtering Hierarchical Subsystems” on page 6-14
“Updating Models with Hidden Nodes” on page 6-15
“Alternative Ways to Enhance Visibility” on page 6-16

What Is Visualization Filtering?

A multibody model can get so complex that you cannot easily tell its components apart.
Solids, bodies, and multibody subsystems often hide behind each other, hindering your
efforts to examine geometry, pose, and motion on model update or during simulation.

Visualization filtering is a Mechanics Explorer feature that lets you selectively show and
hide parts of your model. By showing only those parts that you want to see, you can more
easily discern any components placed within or behind other components—such as an
engine piston traveling inside a cylinder casing.

The figure shows an example of visualization filtering. Two cylinders, one at the front
and one at the rear, are hidden in the model visualization of the sm_radial_engine
featured example. For a tutorial showing how to use visualization filtering, see “Filter
Radial Engine Visualization” on page 6-17.

6 Visualization and Animation

6-12

Changing Component Visibility

You can show and hide components through a context-sensitive menu accessible in the
tree-view pane of Mechanics Explorer. Right-click a model-tree node to open the menu
and select the desired option. The figure shows the visualization filtering menu.

 Filtering Model Visualization

6-13

Visualization Filtering Options

The visualization filtering menu provides four options for you to select from:

• Show This — Enable visualization for the selected component. This option has no
effect if the component is already visible.

• Hide This — Disable visualization for the selected component. This option has no
effect if the component is already hidden.

• Show Only This — Enable visualization for the selected component and disable
visualization for the remainder of the model. This option has no effect if the selected
component is already the only component visible.

• Show Everything — Enable visualization for every component in the model. This
option has no effect if every component in the model is already visible.

Components You Can Filter

You can filter the visualization of any component with solid geometry. This includes
individual solids, rigid bodies, and multibody subsystems. In general, if a subsystem
contains at least one Solid block, then you can switch its visualization on and off.

Frames, joints, constraints, forces, and torques have no solid geometry to visualize and
therefore cannot be filtered in Mechanics Explorer. You can still open the visualization
filtering context-sensitive menu by right-clicking these nodes, but only one option is
active—Show Everything.

The tree-view pane identifies any node not being visualized by graying out its name. This
includes nodes that can be visualized but are currently hidden and nodes that cannot be
visualized at all. The figure shows an example with the grayed-out names of nodes not
being visualized.

6 Visualization and Animation

6-14

Model Hierarchy and Tree Nodes

Multibody models are hierarchical in nature. They often contain multibody subsystems
comprising rigid-body subsystems, each with one or more solids. The tree-view pane
of Mechanics Explorer represents such a model structure through nodes arranged
hierarchically. A node is a parent node if it contains other nodes, and a child node if it
appears under another node. Nodes can simultaneously be children to some nodes and
parents to others.

The figure shows portion of the tree-view pane of the sm_radial_engine featured
example. The Half_Cylinder_A node is a child to the Housing_and_Cylinder_Assembly
node and a parent to the Fins and Half_Annular_Cylinder nodes.

Filtering Hierarchical Subsystems

Any changes to the visualization settings of a tree node apply equally to all children
of that node, if any. Nodes higher up in the model tree are not affected. As shown in
the following figure, hiding the Half_Cylinder_A node in the sm_radial_engine model
causes the Fins and Half_Annular_Cylinder nodes (children nodes) to hide, but not the
Housing_and_Cylinders_Assembly node (parent node) or the Half_Cylinder_B node
(sibling node).

 Filtering Model Visualization

6-15

If you want to show part of a subsystem you have previously hidden, you can change
the visibility settings for the children nodes that you want to show. For example, if after
hiding the Half_Cylinder_A node, you want to show the Fins child node, you need only
right-click the Fins node and select Show This. Such changes have no effect on the
remainder of the Half_Cylinder_A parent node.

Updating Models with Hidden Nodes

The following apply when you update or simulate a model with previously hidden nodes:

• If the model remains unchanged, the node visibility settings remain unchanged—that
is, the hidden nodes remain hidden and the visible nodes remain visible. This happens

even if you save the Mechanics Explorer configuration to the model by clicking the
icon.

• If you close Mechanics Explorer before updating the model, Mechanics Explorer
reopens with all nodes visible, including any nodes you may have previously hidden.

• If you change the name of a block corresponding to a hidden node—e.g., a Solid block
or a Subsystem block containing a Solid block—the hidden node and any children
nodes it may have become visible.

6 Visualization and Animation

6-16

• If you uncomment a block that corresponds to a hidden node and that you had
previously commented out, the hidden node and any children nodes it may have
become visible.

• If you add to a hidden Subsystem block a Solid block or another Subsystem block with
a Solid block, the child node corresponding to the new block becomes visible upon
model update but the visibility of the hidden parent node remains unchanged.

• If you change the parameters of a block corresponding to a hidden node, that node
and its children nodes retain their original visibility settings—that is, hidden nodes
remain hidden and visible nodes remain visible.

Alternative Ways to Enhance Visibility

Visualization filtering is not the only approach you can use to enhance component
visibility in a model. However, it is often the simplest. It is also the only approach that
doesn’t require you to modify the model in any way. Alternative approaches you can use
include:

• Lowering the opacity of obstructive components—those obscuring other parts of the
model—for example, making the cylinder encasing an engine piston transparent.

• Modeling obstructive components only in part—for example, treating engine cylinders
as half-cylinders to preserve piston visibility during simulation.

• Omitting obstructive components altogether if they serve a purely aesthetic purpose
and have no impact on model dynamics—for example, removing the cylinder
subsystems from the sm_radial_engine featured example.

• Commenting out or through obstructive components if they serve a purely aesthetic
purpose and have no impact on model dynamics—for example, removing the cylinder
subsystems from the sm_radial_engine featured example.

 Filter Radial Engine Visualization

6-17

Filter Radial Engine Visualization

In this section...

“Visualization Filtering” on page 6-17
“Open Example Model” on page 6-18
“Update Example Model” on page 6-18
“Hide Half-Cylinder Subsystem” on page 6-19
“Show Solid in Hidden Subsystem” on page 6-20
“Show Only Piston Subsystem” on page 6-21
“Show Everything” on page 6-22

Visualization Filtering

Visualization filtering is a Mechanics Explorer feature that enables you to selectively
show and hide solids, bodies, and multibody subsystems. This tutorial shows you how
to use this feature to control the visualization of a SimMechanics model, for example, to
observe a model component that might otherwise remain obstructed during simulation.
For more information, see “Filtering Model Visualization” on page 6-11.

Radial Engine Visualization with Two Cylinders Hidden

6 Visualization and Animation

6-18

Open Example Model

In this tutorial, you filter the visualization of the SimMechanics radial engine
featured example. To open this model, at the MATLAB command prompt, enter
sm_radial_engine.

The model contains two top-level subsystems—the housing subsystem,
named Housing_and_Cylinders_Assembly, and the piston subsystem, named
Piston_Crank_Assembly. The housing subsystem contains five half cylinders. The piston
subsystem contains five pistons that travel inside the half cylinders.

Radial Engine Block Diagram

Update Example Model

To open Mechanics Explorer, the SimMechanics visualization utility you must first
update the example model. To do this, in the Simulink menu bar, select Simulation >
Update Diagram (Windows shortcut Ctrl + D). Note the tree-view pane on the left side
of Mechanics Explorer. You access the visualization filtering menu by right-clicking a
node on this pane.

 Filter Radial Engine Visualization

6-19

Radial Engine Model Visualization

Hide Half-Cylinder Subsystem

In the tree-view pane, expand the Housing_and_Cylinders_Assembly node. Right-click
the Half_Cylinder_A node and select Hide This. Mechanics Explorer hides the half-
cylinder subsystem and the solids it contains, corresponding to the nodes Fins and
Half_Annular_Cylinder. The hidden-node names are grayed out in the tree-view pane.
The figure shows the resulting model visualization.

6 Visualization and Animation

6-20

Radial Engine with Hidden Half-Cylinder Subsystem

Show Solid in Hidden Subsystem

In the tree-view pane, expand the Half_Cylinder_A node. Then, right-click the
Half_Annular_Cylinder node and select Show This. The half-cylinder solid is now
visible, but the remainder of its parent of its parent subsystem—in this case, just the
Fins solid—remains hidden. The newly visible half-cylinder node name is no longer
grayed out in the tree-view pane. The figure shows the resulting model visualization.

 Filter Radial Engine Visualization

6-21

Radial Engine with Visible Solid in Hidden Half-Cylinder Subsystem

Show Only Piston Subsystem

In the tree-view pane, collapse the Housing_and_Cylinders_Assembly node. Then, right-
click the Piston_Crank_Assembly node and select Show Only This. Mechanics Explorer
shows the selected node and hides the remainder of the model. In the tree-view pane,
the name of the selected node is the only that is not grayed out. The figure shows the
resulting model visualization.

6 Visualization and Animation

6-22

Radial Engine with Only Piston Subsystem Visible

Show Everything

In the tree-view pane, right-click any node and select Show Everything. All hidden
components become visible. The corresponding nodes are no longer grayed out in the
tree-view pane. The figure shows the resulting model visualization.

 Filter Radial Engine Visualization

6-23

6 Visualization and Animation

6-24

Visualize Frames

In this section...

“Frame Overview” on page 6-24
“Show All Frames” on page 6-24
“Highlight Individual Frames” on page 6-25
“Visualize Frames with Graphical Markers” on page 6-27

Frame Overview

SimMechanics models are based on frames, abstract axis triads that contain all the
position and orientation data in a model. These constructs enable you to connect solids
into rigid bodies, assemble rigid bodies into mechanisms, and prescribe and sense forces,
torques, and motion. Given their importance, then, it makes sense to visualize where and
how you place different frames in a model.

Show All Frames

The easiest way to view the frames in your model is to toggle their visibility on. You can
do this by clicking the Toggle Frames icon in the Mechanics Explorer tool strip, shown
in the following figure.

Alternatively, you can select View > Toggle Frames in the menu bar. Mechanics
Explorer shows all the frames in your model, suiting this approach well for models with
small numbers of frames. The figure shows a radial engine model with frame visibility
toggled on.

 Visualize Frames

6-25

If your model has many frames, a different approach may be ideal, as toggling frame
visibility may clutter the visualization pane with frames that you don’t want to track.

Highlight Individual Frames

To view only the port frames of a block, including those of a subsystem block, you can
select a node in the tree view pane. Mechanics Explorer highlights the port frames
associated with the selected node using a turquoise color. The following figure shows
an example in which one of the connecting rod assemblies in the radial engine model is
highlighted in turquoise.

6 Visualization and Animation

6-26

You can also select individual port frames, which you expose by expanding the tree
nodes. For example, expanding the Piston_Connecting_Rod_Assembly_A node exposes
the port frame P node, which you can then select in order to highlight that frame. The
figure shows the result.

Finally, you can select individual solids directly in the visualization pane, highlighting
their reference frames. The figure shows the result of selecting one of the piston solids
directly. Mechanics Explorer highlights the solid and its reference frame, while the tree
view pane reveals the associated Solid block name. This is the block that you need to
change if you want to modify this particular solid.

 Visualize Frames

6-27

Visualize Frames with Graphical Markers

If a frame in your model has special significance—e.g., if its origin is the point of
application for an external force—you can connect to it a graphical marker. So that
you can perform this task, the Body Elements library provides a Graphic block. Simply
connect the block to the frame you want to visualize and select the marker type to use—
sphere, cube, or frame. The figure shows the radial engine model with a sphere marker
highlighting each of the piston connection frames.

6 Visualization and Animation

6-28

 Go to Block from Mechanics Explorer

6-29

Go to Block from Mechanics Explorer

The first indication that something is wrong in a model is often an unexpected result
in the visualization pane. Unexpected results can include disparities in solid shape and
size, incorrect translation and rotation transforms between solids, and even joints and
constraints that fail to assemble.

To help you troubleshoot such modeling issues, Mechanics Explorer enables you to go
directly to a block associated with a node in the tree view pane. This feature helps you
also to iterate on a model that is working properly, for example, if you want to replace a
body subsystem with an alternative version.

To highlight a block corresponding to a Mechanics Explorer tree node:

1 In the tree view pane of Mechanics Explorer, right-click the node whose block you
want to examine.

2 From the context-sensitive menu, select Go to Block. SimMechanics brings the
block diagram to the front and highlights the block corresponding to the selected
node.

6 Visualization and Animation

6-30

For an example showing how to troubleshoot a model using Mechanics Explorer block
highlighting, see “Find and Fix Aiming-Mechanism Assembly Errors” on page 3-26.

 Configure Model for Video Recording

6-31

Configure Model for Video Recording

In this section...

“Correspondence Between Animation and Simulation Speeds” on page 6-31
“Configure Model with Variable-Step Solver” on page 6-31
“Configure Model with Fixed-Step Solver” on page 6-32

Correspondence Between Animation and Simulation Speeds

Animation videos play at a fixed rate of 30 frames per second. Each video frame, lasting
1/30 s, corresponds to a simulation output time step. To ensure that an animation video
plays at normal speed—i.e., that one second of video playback time corresponds to one
second of simulation time—you must ensure that each output time step too lasts 1/30
s. You can do this by adjusting the configuration parameters for your model. The exact
parameters to adjust depend on your choice of solver: variable-step or fixed step.

Configure Model with Variable-Step Solver

Variable-step solvers generate simulation data at time steps of different durations. The
different time steps can produce time distortion in your video, causing it to speed up
as the time steps contract and to slow down as the time steps expand. To prevent time
distortion in your video and ensure that it plays at the correct speed, you must specify
the desired output times in the model configuration parameters:

1 In the Simulink Editor menu bar, select Simulation > Model Configuration
Parameters.

2 In the Configuration Parameters tree pane, select Data Import/Export.
3 In Output options, select Produce specified output only.
4 In Output times, enter [ti:1/f:tf], where:

• ti is the simulation start time. The default value is 0 s.
• f is the animation video frame rate. This rate is fixed at 30 frames per second.

The fraction 1/f is the required output time step for a video to play at a normal
speed.

• tf is the simulation stop time. The default value is 10 s.

6 Visualization and Animation

6-32

The output times vector determines the time steps at which to output simulation
data. By specifying time steps in 1/30 s intervals, you ensure that each animation
video frame corresponds to a simulation time step of equal size. The result is an
animation video that plays at normal speed without distortion.

You can also manipulate the output time step to generate videos that play at different
speeds. For example, to generate a video that plays at twice the normal speed, multiply
the output time step by 2. The output times vector becomes [ti:2/f:tf]. Similarly, to
generate a video that plays at half the normal speed, divide the output time step by 2.
The output times vector becomes [ti:1/(2*f):tf].

Configure Model with Fixed-Step Solver

Video time distortion cannot occur when you use a fixed-step solver. However, the
animation video can still play back at an unrealistic speed. To ensure that one second of
playback time corresponds to one second of simulation time using a fixed-step solver, you
must adjust the solver step size directly:

1 In the Simulink Editor menu bar, select Simulation > Model Configuration
Parameters.

2 In the Configuration Parameters tree pane, select Solver.
3 Under Solver options, set Type to Fixed-step.
4 Set Solver to an appropriate fixed-step solver for your model.
5 In Fixed-step size (fundamental sample time), enter 1/30.

 Configure Model for Video Recording

6-33

Changing the fixed-step size from 1/30 causes the recorded animation to play back
at a different speed. For example, doubling the step size to 2/30 causes the recorded
animation to play back at twice the normal speed. Similarly, changing the step size to
1/60 causes the recorded animation to play back at half the normal speed.

Note: When using a fixed-step solver, you cannot specify the simulation output times.
You must change the solver time step directly.

Model dynamics should take precedence over video playback considerations. Select a
solver and step size based on the dynamics of your model. Then, if possible, adjust the
time step to control the video playback speed.

6 Visualization and Animation

6-34

Record Animation Video

You can record a video of a model animation in Mechanics Explorer. The video enables
you to document and share in part your simulation results without having to rerun the
simulation. Anyone with a basic media player with AVI support can then watch the
animation without having SimMechanics installed.

If you have not already done so, “Configure Model for Video Recording” on page 6-31
before proceeding. This step ensures that your video plays at the correct speed and
without any time distortion. To record the video:

1 Update or simulate your model. If Mechanics Explorer does not open, see “Turn
Model Visualization Off and On” on page 6-35.

2 In the Mechanics Explorer menu bar, select Tools > Create Video.
3 When prompted, save the video file in a convenient folder. A new window opens with

a display of the model and the recording progress.
4 When the message Video file "filename.avi" has been successfully

created appears on your screen, press OK. filename is the path and name of your
video file.

 Turn Model Visualization Off and On

6-35

Turn Model Visualization Off and On

You may want to suppress model visualization, e.g., when iterating simulation a large
number of times with a MATLAB script. You can prevent Mechanics Explorer from
opening on model update or simulation by changing the model configuration parameters:

1 In the SimMechanics menu bar, select Simulation > Model Configuration
Parameters.

2 Expand the SimMechanics 2G node and select Explorer.
3 Clear the Open Mechanics Explorer on model update or simulation check box.

To enable model visualization once again, select the Open Mechanics Explorer on
model update or simulation check box.

6 Visualization and Animation

6-36

Find and Fix Visualization Issues

In this section...

“Mechanics Explorer Not Opening” on page 6-36
“Model Showing Sideways in Mechanics Explorer” on page 6-36
“Parts Not Showing in Mechanics Explorer” on page 6-37
“Colored Parts Showing Gray in Mechanics Explorer” on page 6-39

Mechanics Explorer Not Opening

By default, Mechanics Explorer is set to open the first time you update a model. If a
Mechanics Explorer window is already open for your model, the open window updates
the model display. Note, however, that updating a model does not automatically bring
the Mechanics Explorer window to the front. If the Mechanics Explorer window is hidden
during model update, you must bring that window to the front to see the updated model.

Set Mechanics Explorer to Open on Model Update

If Mechanics Explorer fails to open during model update, check that Mechanics Explorer
is set to open on model update:

1 In the Simulink Editor menu bar, select Simulation > Model Configuration
Parameters.

2 Expand the SimMechanics 2G node.
3 Click Explorer.
4 Verify that Open Mechanics Explorer on model update or simulation is

selected.

Model Showing Sideways in Mechanics Explorer

By default, Mechanics Explorer displays a model with the Z axis of the World frame
pointing up. Using this convention, the default gravity vector [0 0 -9.81] m/s^2
points down, a direction that is practical for most applications. However, this convention
differs from that which CAD platforms commonly use, Y axis up, causing Mechanics
Explorer to display some models sideways. If this happens, you can manually change the

 Find and Fix Visualization Issues

6-37

view convention to that used in the original CAD assembly. The figure shows the default
Mechanics Explorer display of an imported robot arm model.

Change View Convention

To change the view convention of a model:

1 In the Mechanics Explorer toolbar, click the View Convention drop-down menu.
2 Select Y up (ZX Top).
3 Refresh the Mechanics Explorer display by selecting a view point from the

Mechanics Explorer tool bar.

Mechanics Explorer displays the model using the new view convention.

Parts Not Showing in Mechanics Explorer

During CAD import, SimMechanics uses a set of geometry files in STEP or STL format
to generate the 3-D surface geometry of each CAD part. If SimMechanics cannot load the

6 Visualization and Animation

6-38

geometry file for a part, that part appears invisible in Mechanics Explorer. This issue
does not affect model update or simulation.

The figure shows the Mechanics Explorer display of an imported model containing an
invalid geometry file.

Correct Visualization Issue

If a part of an imported model appears invisible in Mechanics Explorer:

1 In Mechanics Explorer, identify the name of each invisible part.
2 In the block diagram, open the dialog boxes of the associated Solid blocks.
3 In the Geometry section, check that the name and location of the geometry files are

correct.

If either is incorrect, enter the correct information and update the model. Check that
Mechanics Explorer displays the invisible part. If not, check if the geometry files are
valid.

 Find and Fix Visualization Issues

6-39

Geometry File Issues

To visualize a CAD assembly that you import, SimMechanics relies on a set of geometry
files that specify the 3-D surface geometry of the CAD parts. Each geometry file specifies
the surface geometry of one CAD part as a set of 2-D triangles. To do this, the geometry
files contain:

• [X Y Z] coordinates of the triangle vertices
• [X Y Z] components of the normal vectors for the triangles.

If a geometry file specifies a normal vector with zero length, SimMechanics issues a
warning. The geometry file fails to load.

Colored Parts Showing Gray in Mechanics Explorer

To import the color of a CAD part into SimMechanics, the color must be specified at the
part level. Colors specified at the feature level, such as individually colored surfaces, or
assembly level do not carry over into SimMechanics. This can cause parts to appear gray
—the default solid color in SimMechanics—during model visualization. To correct this
issue, you must modify the CAD part file directly to ensure that it contains a single color
applied to the entire part.

CAD Import

7

About CAD Import

• “CAD Translation” on page 7-2
• “CAD Import” on page 7-5
• “Install and Register SimMechanics Link Software” on page 7-9
• “Import Robot Arm Model” on page 7-11
• “Import Stewart Platform Model” on page 7-16
• “Find and Fix CAD Import Issues” on page 7-21

7 About CAD Import

7-2

CAD Translation

In this section...

“CAD Translation Steps” on page 7-3
“Software Requirements” on page 7-3

You can translate a CAD assembly into a SimMechanics model for simulation and
analysis. This process is called CAD translation. By translating a CAD assembly into
a SimMechanics model, you leverage the strengths of your CAD platform with the
strengths of SimMechanics software. You can modify any model that you translate—
for example, adding actuators and sensors—to fit the needs of your application. CAD
translation is especially useful for control system design.

 CAD Translation

7-3

CAD Translation Steps

CAD translation is a two-step process. First, you export a CAD assembly in XML format.
Then, you import the XML file into SimMechanics. SimMechanics uses the XML file to
automatically generate a model that replicates the original CAD assembly. If the CAD
assembly contains only supported constraints, CAD import requires no additional work
on your part. Once SimMechanics generates your model, you are ready to simulate and
analyze that model. The table summarizes the two CAD translation steps.

Translation Step Description

CAD Export Generate XML import file from CAD
assembly

CAD Import Generate SimMechanics model from import
files

You must export a CAD assembly before you import it into SimMechanics. The schematic
shows the CAD translation step sequence. A CAD assembly is the starting point of CAD
translation. Exporting that assembly in XML format and importing the resulting XML
file into SimMechanics produces an equivalent SimMechanics model.

Software Requirements

The table provides the software requirements for CAD translation. The requirements
depend on the CAD translation step—export or import. For example, a CAD platform is a
requirement only for CAD export.

7 About CAD Import

7-4

Software Notes CAD Export CAD Import

CAD Platform ✓
MATLAB Registration as

computing server
required

✓ ✓

SimMechanics ✓
SimMechanics Link ✓

The software requirements for CAD translation are optimized for cooperation between
CAD and SimMechanics engineers. A CAD engineer can export the CAD assembly
without an active SimMechanics installation. Likewise, a SimMechanics engineer can
import the CAD assembly without an active CAD platform installation.

See Also
smimport

Related Examples
• “Install and Register SimMechanics Link Software” on page 7-9
• “Import Robot Arm Model” on page 7-11
• “Import Stewart Platform Model” on page 7-16
• “Find and Fix CAD Import Issues” on page 7-21

More About
• “CAD Import” on page 7-5

 CAD Import

7-5

CAD Import

In this section...

“Importing a Model” on page 7-5
“Generating Import Files” on page 7-6
“SimMechanics XML Schema” on page 7-7

CAD Import is the second and final step of CAD translation. During CAD import,
SimMechanics interprets the SimMechanics Import XML file generated during CAD
Export. Then, based on the structure and parameters that the XML file provides,
SimMechanics automatically generates model that replicates the original CAD assembly.

Importing a Model

CAD Import does not require access to the original CAD assembly or associated CAD
platform. Access to the surface-geometry files is not required for simulation, but it
is required for visualization. You can simulate an imported model that contains no
geometry files. However, the Mechanics Explorer visualization utility cannot display a
representation of a model without the geometry files.

In the model, each CAD part maps into a rigid body subsystem. Each CAD constraint
or set of CAD constraints, map into a joint. Block names for SimMechanics subsystems

7 About CAD Import

7-6

are based on the original CAD parts and subassemblies which the subsystems represent.
SimMechanics appends the suffix RIGID to the stem of a rigid body name. For example,
CAD part base translates into rigid body subsystem base_RIGID. The following figure
shows the imported SimMechanics model of a CAD robot assembly.

Modify SimMechanics model to fit the needs of your application.

Generating Import Files

To import a multibody model into SimMechanics, you must first generate the
SimMechanics Import XML file. You can generate this file automatically, using the
SimMechanics Link utility, or manually, using the XML schema that MathWorks®

provides. The method that you use depends on the type of model that you want to import.
The table summarizes the two methods and their limitations.

Import File Generation Method Limitations

SimMechanics Link Works only for CAD assemblies. CAD
assembly must come from one of three
supported CAD platforms.

XML Schema Requires knowledge of XML file generation
based on XML schema

 CAD Import

7-7

SimMechanics Link is a free utility that MathWorks provides. Use this utility to
generate the SimMechanics Import XML file that you need to import a CAD assembly
into SimMechanics. For more information about SimMechanics Link , see “Install and
Register SimMechanics Link Software” on page 7-9.

SimMechanics XML Schema

The XML Schema is a set of files written according to the W3C XML Schema
specification. MathWorks provides these files so that you can generate a SimMechanics
Import XML file manually or using an external application. Use the XML Schema to
generate the SimMechanics Import XML file for a CAD assembly or other multibody
model.

The XSD files describe the elements and attributes that a SimMechanics Import XML
file can contain and the order in which they must appear. Generating an XML file in

7 About CAD Import

7-8

accordance with the XML schema ensures that SimMechanics can successfully import
it. Once you have generated the XML file, validate it against the schema to ensure
SimMechanics can import it without issue.

To access the SimMechanics XML schema, visit the SimMechanics product website.
Follow instructions to download the XSD files.

See Also
smimport

Related Examples
• “Install and Register SimMechanics Link Software” on page 7-9
• “Import Robot Arm Model” on page 7-11
• “Import Stewart Platform Model” on page 7-16
• “Find and Fix CAD Import Issues” on page 7-21

More About
• “CAD Translation” on page 7-2

http://www.mathworks.com/products/simmechanics/index.html

 Install and Register SimMechanics Link Software

7-9

Install and Register SimMechanics Link Software

In this section...

“Before You Begin” on page 7-9
“Step 1: Get Installation Files” on page 7-9
“Step 2: Run Installation Function” on page 7-9
“Step 3: Register MATLAB as Automation Server” on page 7-10
“Step 4: Enable SimMechanics Link Plug-In” on page 7-10

Before You Begin

You must have a valid MATLAB license and one of the supported CAD applications:

• Autodesk Inventor® software
• PTC® Creo™ software
• SolidWorks® software

Your MATLAB and CAD installations must have the same system architecture—e.g.,
Windows 64-bit.

Step 1: Get Installation Files

1 Go to the SimMechanics Link download page.
2 Follow the prompts on the download page.
3 Save the zip archive and .m file in a convenient folder.

Select the file versions matching your MATLAB release number and system
architecture—e.g., release R2015b and Win64 architecture. Do not extract the zip
archive.

Step 2: Run Installation Function

1 Run MATLAB as administrator.
2 Add the saved installation files to the MATLAB path.

http://www.mathworks.com/products/simmechanics/download_smlink.html

7 About CAD Import

7-10

You can do this by entering addpath('foldername') at the MATLAB command
prompt. Replace foldername with the name of the folder in which you saved the
installation files—e.g., C:\Temp.

3 At the MATLAB command prompt, enter install_addon('zipname').

Replace zipname with the name of the zip archive—e.g.,
smlink.r2015b.win64.zip.

Step 3: Register MATLAB as Automation Server

Each time you export a CAD assembly, the SimMechanics Link plug-in attempts to
connect to MATLAB. For the connection to occur, you must register MATLAB as an
automation server. You can do this in two ways:

• In a MATLAB session running in administrator mode — At the command prompt,
enter regmatlabserver.

• In an MS-DOS window running in administrator mode — At the command prompt,
enter matlab -regserver.

Step 4: Enable SimMechanics Link Plug-In

Before you can export an assembly, you must enable the SimMechanics Link plug-in on
your CAD application. To do this, see:

• “Enable SimMechanics Link Inventor Plug-In”
• “Enable SimMechanics Link Creo-Pro/E Plug-In”
• “Enable SimMechanics Link SolidWorks Plug-In”

 Import Robot Arm Model

7-11

Import Robot Arm Model

In this section...

“Check Import Files” on page 7-12
“Import Robot Assembly” on page 7-13
“Visualize and Simulate Robot Assembly” on page 7-13

In this example, you import a CAD assembly with name robot into SimMechanics.
SimMechanics provides the smimport command so that you can import a CAD assembly.
The command is the only SimMechanics tool you need to import a CAD assembly. The
CAD import procedure is the same for all CAD platforms.

Note: This example uses an XML file and a set of geometry files that are present in your
SimMechanics installation. You can export the XML and geometry files directly from a
supported CAD platform, but the names of the files may differ from the example.

The following figure shows the original CAD assembly inside the SolidWorks CAD
platform.

7 About CAD Import

7-12

Check Import Files

Before you import the sm_robot CAD assembly, check that the import files exist. The
import files include one SimMechanics Import XML file and a set of geometry files that
specify the geometry of all CAD parts.

1 At the MATLAB command line, enter the following command to change the current
working directory to the subdirectory that contains the robot example files:

cd(fullfile(matlabroot,'toolbox','physmod','sm','smdemos',...

'import','robot'))

 Import Robot Arm Model

7-13

2 At the MATLAB command line, enter ls or dir to list all files in the \robot
directory.

3 Check that the directory contains XML file sm_robot.xml and a set of geometry files.

Import Robot Assembly

Once you have verified that all required files exist, proceed to import the assembly.

1 At the MATLAB command line, enter smimport('sm_robot.xml').
2 Confirm that SimMechanics opens a new model with name sm_robot.

Note: SimMechanics automatically generates the new model without extra input on
your part. Review the model and check for errors and inconsistencies in the block
diagram.

3 In the Simulink Editor window that contains the model, select File > Save As.
4 In the Save As dialog box, enter the desired file name and select a convenient

directory in which store the model file.

Visualize and Simulate Robot Assembly

1 In the Simulink Editor window that contains the robot model, select Simulation >
Update Diagram or press Ctrl+D.

Note: When you update the diagram, SimMechanics automatically updates the
model display in Mechanics Explorer. SimMechanics relies on the set of geometry

7 About CAD Import

7-14

files to represent the 3-D geometry of each CAD part. If the files are not available,
SimMechanics still generates the model, but Mechanics Explorer cannot display the
assembly.

2 In the Mechanics Explorer toolbar, set View Convention to Y up (XY Front).

Note: Most CAD systems use a Y up default view convention. The convention
differs from the Mechanics Explorer default setting, Z up. Selecting the Y up
view convention causes Mechanics Explorer to display the assembly with the same
orientation used in the CAD platforms.

3 In the toolbar, click the icon for the desired viewpoint.

Note: Selecting the Y up view convention does not affect the Mechanics Explorer
display until you click a view point. You have the choice between seven standard
viewpoints: front, back, top, down, left, right, and isometric. Once you select a view
point, you can rotate, pan, and zoom to adjust the display of your model.

4 Confirm that a Mechanics Explorer window opens with a static display of the robot
assembly.

 Import Robot Arm Model

7-15

5 In the Simulink Editor window for the model, select Simulation > Run or press
Ctrl+T to simulate the model.

Tip The model lacks actuation inputs. When you simulate the model, the robot arm
moves strictly due to gravity effects. You can change the gravity specification in the
Mechanism Configuration block.

You can add actuation inputs to the model. Add a block from the Forces & Torques
library to actuate a rigid body. Select an actuation mode in the model joint blocks to
actuate a joint.

See Also
smimport

Related Examples
• “Install and Register SimMechanics Link Software” on page 7-9
• “Import Stewart Platform Model” on page 7-16
• “Find and Fix CAD Import Issues” on page 7-21

More About
• “CAD Translation” on page 7-2
• “CAD Import” on page 7-5

7 About CAD Import

7-16

Import Stewart Platform Model

In this section...

“Check Import Files” on page 7-17
“Import Model” on page 7-18
“Visualize and Simulate Robot Assembly” on page 7-19

You can import a CAD assembly into a SimMechanics model. To do this, you use the
SimMechanics command smimport. In this example, you import the CAD assembly for a
Stewart platform. All required files are provided with your SimMechanics installation.

 Import Stewart Platform Model

7-17

Check Import Files

To import the CAD assembly, you must have access to the SimMechanics Import XML
and geometry files for this assembly. Check that you have these files before proceeding.

1 Navigate to directory

<matlabroot>/toolbox/physmod/sm/smdemos/...

...import/stewart_platform

2 Check that the following files exist.

7 About CAD Import

7-18

File Quantity Description

SimMechanics Import
XML

One Provides model structure
and parameters

STEP or STL Multiple Provides part geometry

Import Model

If you have access to the import files, you can import the model. To do this, at
the MATLAB command prompt, enter smimport('stewart_platform.xml').
SimMechanics automatically generates a Stewart platform model. This model replicates
the original CAD assembly.

 Import Stewart Platform Model

7-19

Visualize and Simulate Robot Assembly

You can now simulate the model that you imported. On the Simulink tool bar, click the
Run button. Alternatively, press Ctrl+T. Mechanics Explorer opens with a dynamic
display of your model.

By default, Mechanics Explorer uses a Z axis up view convention. This convention differs
from that which most CAD platforms use—Y axis up. The different view conventions
cause the Stewart platform to appear sideways in the visualization pane. To fix this
issue, change the Mechanics Explorer view convention to Y axis up:

• On the Mechanics Explorer tool bar, in the View Convention drop-down list, select
Y Up (XY Front).

To refresh the visualization pane using the new view convention, on the Mechanics
Explorer tool bar, click any standard view button, e.g., Isometric View.

7 About CAD Import

7-20

Tip Actuate the stewart_platform model with blocks from the Forces and Torques
library. Then, simulate the model and analyze its dynamic behavior in Mechanics
Explorer.

See Also
smimport

Related Examples
• “Install and Register SimMechanics Link Software” on page 7-9
• “Import Robot Arm Model” on page 7-11
• “Find and Fix CAD Import Issues” on page 7-21

More About
• “CAD Translation” on page 7-2
• “CAD Import” on page 7-5

 Find and Fix CAD Import Issues

7-21

Find and Fix CAD Import Issues

In this section...

“CAD Constraints Replaced with Rigid Connections” on page 7-21
“Model Showing Sideways in Mechanics Explorer” on page 7-22
“Parts Not Showing in Mechanics Explorer” on page 7-24
“Colored Parts Showing Gray in Mechanics Explorer” on page 7-25

CAD Constraints Replaced with Rigid Connections

SimMechanics supports most, but not all, CAD constraints. If you import a CAD
assembly with a CAD constraint that SimMechanics does not support, SimMechanics
issues a warning message and automatically replaces that constraint with a rigid
connection.

The figure shows the imported model of a CAD assembly that contains an unsupported
gear constraint. Because SimMechanics does not support that particular gear constraint,
it replaces it with a frame line. The frame line represents a rigid connection.

Identify and Change Automatic Rigid Connections

The warning message identifies the blocks and ports that connect to the unsupported
constraint. Use this information to identify the new rigid connection in the model.

7 About CAD Import

7-22

Then, determine if any combination of SimMechanics joint, gear, or constraint blocks
adequately replaces the unsupported constraint. If so, replace that rigid connection. Run
the simulation to check that the model behaves as you expect.

Model Showing Sideways in Mechanics Explorer

By default, Mechanics Explorer displays a model with the Z axis of the World frame
pointing up. Using this convention, the default gravity vector [0 0 -9.81] m/s^2
points down, a direction that is practical for most applications. However, this convention
differs from that which CAD platforms commonly use, Y axis up, causing Mechanics
Explorer to display some models sideways. If this happens, you can manually change the
view convention to that used in the original CAD assembly. The figure shows the default
Mechanics Explorer display of an imported robot arm model.

 Find and Fix CAD Import Issues

7-23

Change View Convention

To change the view convention of a model:

1 In the Mechanics Explorer toolbar, click the View Convention drop-down menu.
2 Select Y up (ZX Top).
3 Refresh the Mechanics Explorer display by selecting a view point from the

Mechanics Explorer tool bar.

Mechanics Explorer displays the model using the new view convention.

7 About CAD Import

7-24

Parts Not Showing in Mechanics Explorer

During CAD import, SimMechanics uses a set of geometry files in STEP or STL format
to generate the 3-D surface geometry of each CAD part. If SimMechanics cannot load the
geometry file for a part, that part appears invisible in Mechanics Explorer. This issue
does not affect model update or simulation.

The figure shows the Mechanics Explorer display of an imported model containing an
invalid geometry file.

 Find and Fix CAD Import Issues

7-25

Correct Visualization Issue

If a part of an imported model appears invisible in Mechanics Explorer:

1 In Mechanics Explorer, identify the name of each invisible part.
2 In the block diagram, open the dialog boxes of the associated Solid blocks.
3 In the Geometry section, check that the name and location of the geometry files are

correct.

If either is incorrect, enter the correct information and update the model. Check that
Mechanics Explorer displays the invisible part. If not, check if the geometry files are
valid.

Geometry File Issues

To visualize a CAD assembly that you import, SimMechanics relies on a set of geometry
files that specify the 3-D surface geometry of the CAD parts. Each geometry file specifies
the surface geometry of one CAD part as a set of 2-D triangles. To do this, the geometry
files contain:

• [X Y Z] coordinates of the triangle vertices
• [X Y Z] components of the normal vectors for the triangles.

If a geometry file specifies a normal vector with zero length, SimMechanics issues a
warning. The geometry file fails to load.

Colored Parts Showing Gray in Mechanics Explorer

To import the color of a CAD part into SimMechanics, the color must be specified at the
part level. Colors specified at the feature level, such as individually colored surfaces, or
assembly level do not carry over into SimMechanics. This can cause parts to appear gray
—the default solid color in SimMechanics—during model visualization. To correct this
issue, you must modify the CAD part file directly to ensure that it contains a single color
applied to the entire part.

See Also
smimport

Related Examples
• “Install and Register SimMechanics Link Software” on page 7-9

7 About CAD Import

7-26

• “Import Robot Arm Model” on page 7-11
• “Import Stewart Platform Model” on page 7-16

More About
• “CAD Translation” on page 7-2
• “CAD Import” on page 7-5

Deployment

8

Code Generation

8 Code Generation

8-2

About Code Generation

In this section...

“Simulation Accelerator Modes” on page 8-2
“Model Deployment” on page 8-3

SimMechanics supports code generation with Simulink Coder™. You can generate C/C++
code from a SimMechanics model to accelerate simulation or to deploy a model.

Simulation Accelerator Modes

Simulink can generate C/C++ executable code to shorten simulation time. Two
simulation modes generate code:

 About Code Generation

8-3

• Accelerator
• Rapid Accelerator

SimMechanics supports the two accelerator modes. You can access the simulation
accelerator modes in the Simulink Editor window for your model. Click Simulation
> Mode, and select Accelerator or Rapid Accelerator. Accelerator modes do not
require additional Simulink code generation products.

Note: Simulation accelerator modes do not support model visualization. When you
simulate a SimMechanics model in Accelerator or Rapid Accelerator modes,
Mechanics Explorer does not open with a 3-D display of your model.

Model Deployment

With Simulink Coder, you can generate standalone C/C++ code for deployment outside
the Simulink environment. The code replicates the source SimMechanics model. You can
use the stand-alone code for applications that include:

• Hardware-In-Loop (HIL) testing
• Software-In-Loop (SIL) testing
• Rapid prototyping

Note: SimMechanics supports, but does not perform, code generation for model
deployment. Code generation for model deployment requires the Simulink Coder product.

Related Examples
• “Configure Four-Bar Model for Code Generation” on page 8-4
• “Configure Model for Rapid Accelerator Mode” on page 8-6
• “Find and Fix Code Generation Issues” on page 8-9

8 Code Generation

8-4

Configure Four-Bar Model for Code Generation

You can generate code from a SimMechanics model for deployment outside the MATLAB
environment. This example shows how to configure a four-bar model for code generation
using a variable-step solver with the objective of execution efficiency. The example uses
the default Simulink solver ode45 (Dormand-Prince).

The four-bar model is present in your SimMechanics installation. To open the model, at
the MATLAB command line type sm_four_bar. A new Simulink Editor window opens
with the block diagram of the four-bar model.

Configure Model

To configure the model for code generation:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

 Configure Four-Bar Model for Code Generation

8-5

2 In the Model Configuration Parameters dialog box, select Code Generation.
3 In Target Selection, enter rsim.tlc.

Note: You must use the rsim.tlc target each time you use a variable-step solver.
You can change the solver type in the Solver section of the Model Configuration
Parameters window.

4 In Code Generation Advisor, select Execution Efficiency.
5 Click Apply.
6 To generate C code for your model, click Build.

Related Examples
• “Configure Model for Rapid Accelerator Mode” on page 8-6
• “Find and Fix Code Generation Issues” on page 8-9

More About
• “About Code Generation” on page 8-2

8 Code Generation

8-6

Configure Model for Rapid Accelerator Mode

In this section...

“Model Overview” on page 8-6
“Configure Model” on page 8-7

Model Overview

You can run a SimMechanics model in Accelerator and Rapid Accelerator modes. When
you select an accelerator mode, SimMechanics generates executable code that accelerates
the model simulation. This example shows how to configure a four-bar model for Rapid
Accelerator simulation mode. The simulation uses the default Simulink solver ode45
(Dormand-Prince).

The four-bar model is present in your SimMechanics installation. To open the model, at
the MATLAB command line type sm_four_bar. A new Simulink Editor window opens
with the block diagram of the four-bar model.

 Configure Model for Rapid Accelerator Mode

8-7

Configure Model

To configure the model for Rapid Acceleration simulation mode, follow these steps:

1 In the Simulink Editor window for your model, select Simulation.
2 In the drop-down menu, select Mode > Rapid Accelerator.
3 Select Simulation > Model Configuration Parameters.
4 In Code Generation, under System target file, enter rsim.tlc.

Note: You must use the rsim.tlc target each time you generate code with a
variable-step solver. Both Accelerator and Rapid Accelerator modes generate
executable code that requires the rsim.tlc target to be used with variable-step
solvers.

5 Expand the SimMechanics 2G node.
6 Select Explorer.
7 Clear the Open Mechanics Explorer on model update or simulation check box.

Note: Clearing the Open Mechanics Explorer on model update or simulation
check box disables visualization with Mechanics Explorer. Disabling visualization
prevents SimMechanics from issuing a warning message when you simulate a model
in Accelerator or Rapid Accelerator mode.

8 Press Ctrl+T to simulate the model.

Note: The Rapid Accelerator mode incurs an initial time cost to generate the
executable code. Once the code is generated, the simulation proceeds more rapidly.
Rapid Accelerator mode is suggested for large or complex SimMechanics models with
long simulation times.

The Rapid Accelerator mode does not support visualization. Mechanics Explorer does
not open, and you cannot view a dynamic simulation of the model. All other simulation
capabilities remain functional, including graphics and scopes.

Related Examples
• “Configure Four-Bar Model for Code Generation” on page 8-4

8 Code Generation

8-8

• “Find and Fix Code Generation Issues” on page 8-9

More About
• “About Code Generation” on page 8-2

 Find and Fix Code Generation Issues

8-9

Find and Fix Code Generation Issues

In this section...

“Variable step Simulink solver requires rsim.tlc target” on page 8-9
“Simulink solver must be continuous” on page 8-10
“SimMechanics does not support visualization in accelerator mode” on page 8-10
“SimMechanics Does Not Support Run-Time Parameters” on page 8-11

SimMechanics supports code generation using Simulink Coder. However, certain
guidelines and limitations apply. These include:

• Variable step Simulink solver requires rsim.tlc target.
• Simulink solver must be continuous.
• SimMechanics does not support visualization in accelerator mode.
• SimMechanics does not support run-time parameters.

Note: To generate code for a SimMechanics model, you must have an active Simulink
Coder installation.

Variable step Simulink solver requires rsim.tlc target

Code generation is compatible with fixed- and variable-step solvers. If you select a
variable-step solver, you must specify system target file rsim.tlc. To specify the
rsim.tlc system target file, follow these steps:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In the left pane of the Model Configuration Parameters dialog box, select Code
Generation.

3 In System target file, enter rsim.tlc.
4 Click Apply.
5 Click Build to generate code for the active model.

8 Code Generation

8-10

Simulink solver must be continuous

Both fixed- and variable-step solvers can be continuous or discrete. Generating code
from a SimMechanics model requires a continuous solver. SimMechanics blocks use
continuous time samples, and are incompatible with discrete solvers. If you attempt to
generate code with a discrete solver, Simulink Coder issues an error.

If you receive an error stating that SimMechanics does not support a discrete solver,
select a continuous Simulink solver. To change the Simulink solver, follow these steps:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In Solver, under Solver options, click Solver.
3 In the drop-down menu, select any solver with the exception of discrete (no

continuous states).

SimMechanics does not support visualization in accelerator mode

SimMechanics supports Accelerator and Rapid Accelerator simulation modes. Selecting
an accelerator mode generates executable code that shortens the time required to run
a simulation. However, the simulation produces no visualization output. Mechanics
Explorer does not open, and you cannot visualize the model simulation. To restore
visualization, select the Normal simulation mode.

If you simulate a model in Accelerator or Rapid Accelerator mode, SimMechanics issues
a warning indicating that accelerator modes do not support visualization. To remove the
warning, disable visualization with Mechanics Explorer:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In the Model Configuration Parameters window, expand the SimMechanics 2G
node.

3 Select Explorer.
4 Clear the Open Mechanics Explorer on model update or simulation check box.

Note: Clearing the Open Mechanics Explorer on model update or simulation
check box disables Mechanics Explorer. When you return to Normal simulation mode,
check the box to restore visualization with Mechanics Explorer.

 Find and Fix Code Generation Issues

8-11

SimMechanics Does Not Support Run-Time Parameters

Model parameters are fixed during code generation. To change model parameters, edit
the parameters in SimMechanics and regenerate code for the model. You can only change
model parameters in SimMechanics itself.

Related Examples
• “Configure Four-Bar Model for Code Generation” on page 8-4
• “Configure Model for Rapid Accelerator Mode” on page 8-6

More About
• “About Code Generation” on page 8-2

